2,175 research outputs found

    Réalité et représentations dans l’art romain. L’exemple des trophées aux captifs

    Full text link
    Le trophée accompagné de captifs, motif iconographique récurrent dans l’art romain, a fait l’objet de maints commentaires et tentatives d’interprétation. Certaines de ces approches, illustrées ici par l’exemple des trophées dits de Marius, se sont particulièrement attachées à identifier les prisonniers figurés et la victoire que le trophée a pu célébrer ou commémorer. Or, pour appréhender ces représentations dans toute leur complexité, il s’agit de renouveler la problématique en intégrant les compositions dans le contexte global qui les a suscitées et produites. C’est la signification de l’image comme élément faisant partie d’un système de représentations et participant à la diffusion d’un discours cohérent sur le succès, la défaite et l’ennemi qu’il nous incombe de mettre en évidence. Les trophées aux captifs sont des représentations orientées de la réalité, contribuant à définir l’identité de la société qui les a émises

    Buzz: Face-to-Face Contact and the Urban Economy

    Get PDF
    This paper argues that existing models of urban concentrations are incomplete unless grounded in the most fundamental aspect of proximity; face-to-face contact. Face-to-face contact has four main features; it is an efficient communication technology; it can help solve incentive problems; it can facilitate socialization and learning; and it provides psychological motivation. We discuss each of these features in turn, and develop formal economic models of two of them. Face-to-face is particularly important in environments where information is imperfect, rapidly changing, and not easily codified, key features of many creative activities.Agglomeration, clustering, urban economics, face-to-face

    Post-coronagraphic tip-tilt sensing for vortex phase masks: the QACITS technique

    Get PDF
    Small inner working angle coronagraphs, like the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Under the assumption of small phase aberrations, we show that the behaviour of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane by Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. Simulations have been performed to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. The QACITS technique principle is further validated by experimental results in the case of an unobstructed circular aperture. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5×1025 \times 10^{-2} {\lambda}/D when wavefront errors amount to {\lambda}/14 rms and 10210^{-2} {\lambda}/D for {\lambda}/70 rms errors (with {\lambda} the wavelength and D the pupil diameter). The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.Comment: 12 pages, 15 figures, accepted for publication in A&

    Guides d'onde rubans en Polydimethylsiloxane (PDMS) a large gamme spectrale pour des applications en photonique intégrée

    No full text
    National audienceLa réalisation et la caractérisation de guides d'onde ruban constitués du même matériau polymère à la fois pour le coeur et pour la gaine sont présentées. Ces structures guidantes sont fabriquées à partir de polydimethylsiloxane (PDMS), qui a été retenu pour sa très bonne transparence sur une large gamme spectrale, notamment aux courtes longueurs d'onde (jusqu'à 240 nm) et pour son processus de mise en forme par lithographie douce, méthode simple et bas coût. De premiers tests d'injection optique ont montré que le guidage était effectif dans le visible à 635 nm et à 447 nm et les pertes optiques ont été estimées à quelques dB.cm-1 à 635 nm et à une dizaine de dB.cm-1 à 447 nm

    Direct injection in organic SU8 nanowires and nanotubes for waveguiding properties investigation

    Get PDF
    International audienceWe report photonic concepts related to injection and sub-wavelength propagation in nanofibers (nanowires and nanotubes). These nanostructures are fabricated by the wetting template method leading to aspect ratio of over 250. At first, injection into nanowires and nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with sub-micronic radius of curvature. Theoretical simulation by finite domain time-dependent (FDTD) method was used to determine the sub-wavelength propagation for nanowires and nanotubes and corroborate this coupling phenomena. The original confinment of energy density into SU8 nanotubes is highlighted. Finally, characterisation of propagation losses is reported by using a cut-back method transposed to such nanotubes and determined to range between 1 and 2 dB/mm. Both injection and cut-back method developed here are compatible with any sub-micronic structures. This work on SU8 nanofibers suggests broader perspectives for future nanophotonics

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: III. Interference Caused by a Double Pulse

    Full text link
    In order to study consequences of the differences between the ionic-to-neutral and neutral-to-ionic transitions in the one-dimensional extended Peierls-Hubbard model with alternating potentials for the TTF-CA complex, we introduce a double pulse of oscillating electric field in the time-dependent Schr\"odinger equation and vary the interval between the two pulses as well as their strengths. When the dimerized ionic phase is photoexcited, the interference effect is clearly observed owing to the coherence of charge density and lattice displacements. Namely, the two pulses constructively interfere with each other if the interval is a multiple of the period of the optical lattice vibration, while they destructively interfere if the interval is a half-odd integer times the period, in the processes toward the neutral phase. The interference is strong especially when the pulse is strong and short because the coherence is also strong. Meanwhile, when the neutral phase is photoexcited, the interference effect is almost invisible or weakly observed when the pulse is weak. The photoinduced lattice oscillations are incoherent due to random phases. The strength of the interference caused by a double pulse is a key quantity to distinguish the two transitions and to evaluate the coherence of charge density and lattice displacements.Comment: 16 pages, 8 figure

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: II. Linear Behavior in Neutral-to-Ionic Transition

    Full text link
    Dynamics of charge density and lattice displacements after the neutral phase is photoexcited is studied by solving the time-dependent Schr\"odinger equation for a one-dimensional extended Peierls-Hubbard model with alternating potentials. In contrast to the ionic-to-neutral transition studied previously, the neutral-to-ionic transition proceeds in an uncooperative manner as far as the one-dimensional system is concerned. The final ionicity is a linear function of the increment of the total energy. After the electric field is turned off, the electronic state does not significantly change, roughly keeping the ionicity, even if the transition is not completed, because the ionic domains never proliferate. As a consequence, an electric field with frequency just at the linear absorption peak causes the neutral-to-ionic transition the most efficiently. These findings are consistent with the recent experiments on the mixed-stack organic charge-transfer complex, TTF-CA. We artificially modify or remove the electron-lattice coupling to discuss the origin of such differences between the two transitions.Comment: 17 pages, 9 figure

    Evidence of environmental strains on charge injection in silole based organic light emitting diodes

    Full text link
    Using d. functional theory (DFT) computations, the authors demonstrated a substantial skeletal relaxation when the structure of 2,5-bis-[4-anthracene-9-yl-phenyl]-1,1-dimethyl-3,4-diphenyl-silole (BAS) is optimized in the gas-phase comparing with the mol. structure detd. from monocrystal x-ray diffraction. The origin of such a relaxation is explained by a strong environmental strains induced by the presence of anthracene entities. Also, the estn. of the frontier orbital levels showed that this structural relaxation affects mainly the LUMO that is lowered of 190 meV in the gas phase. To check if these theor. findings would be confirmed for thin films of BAS, the authors turned to UV photoemission spectroscopy and/or inverse photoemission spectroscopy and electrooptical measurements. The study of the c.d. or voltage and luminance or voltage characteristics of an ITO/PEDOT/BAS/Au device clearly demonstrated a very unusual temp.-dependent behavior. Using a thermally assisted tunnel transfer model, this behavior likely originated from the variation of the electronic affinity of the silole deriv. with the temp. The thermal agitation relaxes the mol. strains in thin films as it is shown when passing from the cryst. to the gas phase. The relaxation of the intramol. thus induces an increase of the electronic affinity and, as a consequence, the more efficient electron injection in org. light-emitting diodes
    corecore