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ABSTRACT

Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-
based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high
sensitivity to pointing errors, which degrades the performance of the coronagraph.
Aims. We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant
Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS).
Methods. Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply
described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish
the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique,
including the case of a centrally obstructed pupil.
Results. The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as
well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has
been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still
adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10−2 λ/D when wavefront errors amount
to λ/14 rms and 10−2 λ/D for λ/70 rms errors (with λ the wavelength and D the pupil diameter).
Conclusions. We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the
QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current
facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close
to the axis.

Key words. techniques: high angular resolution – methods: analytical – methods: numerical

1. Introduction

Vortex coronagraphs (VC, Mawet et al. 2005; Foo et al. 2005;
Mawet et al. 2009) stand amongst the most promising focal
plane phase masks envisioned for the next generation instru-
ments of future extremely large telescopes (e.g., METIS, Brandl
et al. 2014; MICADO, Baudoz et al. 2014; PCS, Kasper et al.
2013). Theoretically, this coronagraphic solution provides a
perfect star light rejection and other valuable features for di-
rect imaging and characterization of exoplanets: achromatic-
ity, continuous 360◦ discovery space, and small inner work-
ing angle (angular distance in which the off-axis transmission
reaches 50%). For these reasons, vortex phase masks al-
ready equip several infrared instruments on 10 m class ground-
based telescopes, namely VLT/NACO (Mawet et al. 2013),
VLT/VISIR (Delacroix et al. 2012; Kerber et al. 2014), LBT/
LMIRCam (Defrère et al. 2014), Subaru/SCExAO (Jovanovic
et al. 2015), and very recently Keck/NIRC2. Scientific results
have been obtained using the coronagraphic mode of these

� F.R.S.-FNRS Research Associate.

facilities, leading to the detection of exoplanets and circumstel-
lar disks (e.g., Absil et al. 2013; Milli et al. 2014; Reggiani et al.
2014). The off-axis well-corrected subaperture on the Palomar
Hale telescope (Serabyn et al. 2007) also provides a VC mode,
which has led to impressive results (Serabyn et al. 2010). These
results include the detection of a companion very close to its
host star (ε Cephei) at an angular separation of 1.1 λ/D (Mawet
et al. 2011, λ and D being the wavelength of observation and the
telescope diameter, respectively).

However, a small inner working angle comes inevitably at
a cost. Vortex phase masks, and in particular vortices of topo-
logical charge lp = 2, such as the annular groove phase masks
(AGPM, Mawet et al. 2005), are amongst the focal plane masks
that offer the narrowest inner working angle (down to 1 λ/D).
This also means, however, that they are highly sensitive to the
centering of the star on the mask. Accurate tracking systems are
therefore required to limit the contrast loss due to pointing er-
rors. A variety of low-order aberration sensing techniques exists
and is used in current instruments, as reviewed by Mawet et al.
(2012). In order to avoid noncommon path errors, the sensor
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must be placed as close as possible to the coronagraphic phase
mask. Solutions include sensors built just before the corona-
graphic mask, such as the Differential Tip-Tilt Sensor (DTTS)
of SPHERE, in which part of the light is diverted thanks to a
dichroic plate (Baudoz et al. 2010); or, the Cal low-order wave-
front sensor of GPI, which uses the light rejected by the central
spot of the occulting mask (Wallace et al. 2010). For focal-plane
phase masks, the later solution cannot be implemented, but a
comparable solution has been proposed by Singh et al. (2014),
making use of the light rejected by the coronagraph thanks to a
reflective Lyot stop. Finally, phase retrieval techniques can also
be applied directly from the image acquired by the scientific de-
tector, like the COFFEE sensor implemented in the SPHERE
instrument (Sauvage et al. 2012).

In this paper, we propose a solution belonging to the latter
category, i.e. a solution based on the analysis of the final image
produced by a VC, to retrieve the tip-tilt affecting the beam inci-
dent on the phase mask. The principle of this technique, referred
to as Quadrant Analysis of Coronagraphic Images for Tip-tilt
Sensing (QACITS), was first introduced by Mas et al. (2012) for
the four quadrant phase mask (FQPM, Rouan et al. 2000). This
technique consists of quantifying the asymmetry observed in the
coronagraphic point spread function (PSF), using the same prin-
ciple as a quadrant cell detector. The differential intensities, or
intensity gradients, are related to the pointing error and allow
the estimation of the tip-tilt aberration affecting the beam. The
simplicity of this technique makes it very easy to implement on
current instruments working with a vortex phase mask, as there
is no need for any modification of the optical setup.

In the next section, we describe the QACITS technique ap-
plied to the perfect VC with an unobstructed pupil and, in par-
ticular, the mathematical model linking the asymmetry in the
image and the tip-tilt. This is followed in Sect. 3 by an exper-
imental validation of the model. For the sake of clarity, the de-
tails of the analytical computation are given in the appendices,
where we introduce a formalism based on Zernike polynomi-
als. In Sect. 4, we detail the implications of a central obstruc-
tion on the PSF shape, and thus on the model used in QACITS.
Additionally, we propose a slightly modified QACITS using two
distinct image areas independently. In Sect. 5, we report on sim-
ulation results of the QACITS performance in presence of higher
order aberrations affecting the wavefront. In the final section, we
draw the conclusions of our study.

2. QACITS: Quadrant Analysis of Coronagraphic
Images for Tip-tilt Sensing

In this section, we introduce the QACITS post-coronagraphic
technique to retrieve the tip-tilt affecting the beam upstream a
vortex phase mask. The demonstration by Mas et al. (2012), in
the case of the FQPM, is based on simulations and experimental
data but an analytical model could also be derived (P. Baudoz,
private communication). In the present section, we derive the
analytical model for the VC of charge lp = 2, based on the typical
coronagraph layout illustrated in Fig. 1. For that purpose, we use
the Zernike formalism described in detail in Appendix A.

2.1. The quadrant analysis principle

Mas et al. (2012) have shown that the amount of tip-tilt aber-
ration that affects the wavefront upstream of the coronagraphic
mask can be retrieved by analyzing the residuals of the attenu-
ated on-axis image acquired by the scientific detector. Indeed,

Fig. 1. Standard coronagraph layout, with a vortex phase mask at the
focal plane and a Lyot stop at the second pupil plane (Lyot plane).

Fig. 2. Simulated images obtained for a tip-tilt of 0.2 λ/D applied in
the horizontal direction, for the case of a four-quadrant phase mask
(left) and a vortex phase mask (right). Each quadrant Qi is a square of
width 2 λ/D and defines an area where the flux is integrated to quantify
the asymmetry in the image.

this aberration induces an asymmetry in the pattern, as illus-
trated in Fig. 2. The asymmetry is quantified by two flux mea-
surements, ΔIx and ΔIy, corresponding to the flux gradient along
two orthogonal directions in the image, which can be defined as

ΔIx =
(I2 + I4) − (I1 + I3)

I0
and ΔIy =

(I1 + I2) − (I3 + I4)
I0

, (1)

where Ik =
∫

Qk
I is the flux contained in each quadrant area Qk

and I0 =
4∑
i

∫
Qi

Inc is the total amount of flux contained in the

noncoronagraphic image Inc. In practice, these areas are squares
of width a few λ/D (2 λ/D in Fig. 2). Empirically, Mas et al.
(2012) found that in the small aberration approximation, these
quantities are directly linked to the amount of tip-tilt in the x
and y directions, Tx and Ty, respectively, following the model:

ΔIx = β
(
T 3

x + αTxT 2
y

)
and ΔIy = β

(
T 3
y + αTyT

2
x

)
, (2)

β being a normalization coefficient. In the case of the FQPM,
they found αFQPM = 4 and managed to find an approximate so-
lution of the system. In the following section, we show that for
the vortex phase mask, the model can be derived analytically us-
ing the Zernike-based analysis.

2.2. Zernike formalism: from entrance pupil to Lyot plane

The phase of a tilted wavefront using Zernike polynomials is
expressed as

φ = TxZ2(r) + TyZ3(r), (3)
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where r = (r, θ), the polar coordinates in the pupil plane, Tx

and Ty are the rms values for tip and tilt modes in radians,
Z2 = 2r cos θ and Z3 = 2r sin θ are the tip-tilt modes expressed as
the standard Zernike polynomials described by Noll (1976) and
recalled in Appendix A.1. These polynomials are normalized to
1 rad rms. In the small aberration approximation, the exponential
function describing the wavefront can be expanded and approx-
imated by

Epup = eiφ ≈ 1 + iφ − φ
2

2
· (4)

The second order expansion is needed to make the nonsymmet-
rical terms appear in the final PSF expression. The development
of φ2 is a combination of the following terms, projected on the
Zernike basis:

Z2(r)2 = Z1(r) + Z4(r)/
√

3 + 2Z6(r)/
√

6,

Z3(r)2 = Z1(r) + Z4(r)/
√

3 − 2Z6(r)/
√

6,

Z2(r) Z3(r) = 2Z5(r)/
√

6,

(5)

where Z1(r), Z4(r), Z5(r) and Z6(r) correspond to the pis-
ton, focus, and the two astigmatism modes, respectively (see
Appendix A.1 for an explanation of the numbering of the poly-
nomials). The complete expression of the field at the entrance
pupil can thus be written as a linear combination of Zernike poly-
nomials, i.e.,

Epup ≈
⎛⎜⎜⎜⎜⎜⎝1 − T 2

x + T 2
y

2

⎞⎟⎟⎟⎟⎟⎠ Z1(r) + iTxZ2(r) + iTyZ3(r)

− T 2
x + T 2

y

2
√

3
Z4(r) − 2TxTy√

6
Z5(r) − T 2

x − T 2
y√

6
Z6(r).

(6)

As shown in Appendices A.2 and A.3, the decomposition of the
wavefront onto the Zernike polynomial basis under the small
aberration approximation turns out to be very convenient for de-
scribing the effect of the vortex phase mask. Indeed, when prop-
agating through the vortex focal plane mask to the Lyot plane,
these Zernike modes translate into complex linear combinations
of Zernike polynomials inside the geometrical pupil. The com-
ponents outside the pupil are discarded here, as they are blocked
by the Lyot stop.

Using the conversion table, which provides the field inside
the reimaged geometrical pupil after a VC of charge lp = 2
(Table A.1), we can thus directly express the electric field after
the Lyot stop as

ELyot =
iTx − Ty

2
Z2(r) +

−Tx − iTy
2

Z3(r) − (Tx + iTy)2

2
√

3
Z4(r)

− i
T 2

x + T 2
y

2
√

6
Z5(r) − T 2

x + T 2
y

2
√

6
Z6(r). (7)

2.3. Final image analysis

The electric field in the detector plane is obtained by the Fourier
transform of Eq. (7) (the Fourier transform of the Zernike poly-
nomials is found in Eq. (A.3)), which leads to

Edet =
π

2
(Tx + iTy)2 2J3(2πα)

2πα + π(Tx + iTy)
2J2(2πα)

2πα eiψ

+
π

2
(T 2

x + T 2
y ) 2J3(2πα)

2πα e2iψ,

(8)

Fig. 3. Simulation of the different components, which form the final im-
age on the detector when the input wavefront is tilted, with the notations
used in Eq. (9).

with (α, ψ) = α the polar coordinates in the image plane. The
final image measured by the detector is the squared modulus of
the previous expression and is thus given by

Idet = π2
[(

T 2
x + T 2

y

)
A2(α)2 + 1

2

(
T 2

x + T 2
y

)2
A3(α)2

+
(
(T 4

x − T 4
y ) cos(2ψ) + 2(T 3

x Ty + T 3
yTx) sin(2ψ)

)
A2

3(α)

+ 2
(
(T 3

x+TxT 2
y ) cos(ψ)+(T 3

y+T 2
x Ty) sin(ψ)

)
A2(α)A3(α)

]
,

(9)

with Ai(α) = 2Ji(2πα)
2πα . The final image consists of several terms,

but only the last two contribute to the axial asymmetry in the
image, as illustrated in Fig. 3. As a consequence, the relation
between tip-tilt and the asymmetry simply writes

ΔIx = β
(
T 3

x + TxT 2
y

)
,

ΔIy = β
(
T 3
y + TyT 2

x

)
.

(10)

Here, β is a normalization constant, corresponding to

β =
8π2

I0

∫ α0

0
A2(α)A3(α)αdα, (11)

with α0 the maximal value allowed for α when integrating over
the finite size quadrants (typically of few λ/D). For the sake of
simplicity, the integral has been expressed using polar coordi-
nates, but, to be exact, it should be rewritten in order to consider
the square shape of the quadrants.

This result is fully consistent with the model found empiri-
cally by Mas et al. (2012) for the FQPM. The only difference lies
in the value of the α parameter of the model given by Eq. (2):
αFQPM = 4 while αvortex = 1. In the vortex case, the system ad-
mits a unique solution, which can be written as

Tx =

(
ΔIx

β

) 1
3
⎛⎜⎜⎜⎜⎝ ΔI2

x

ΔI2
x + ΔI2

y

⎞⎟⎟⎟⎟⎠
1
3

,

Ty =

(
ΔIy
β

) 1
3
⎛⎜⎜⎜⎜⎜⎝ ΔI2

y

ΔI2
x + ΔI2

y

⎞⎟⎟⎟⎟⎟⎠
1
3

·
(12)

The particular value of αvortex reflects the fact that a vortex phase
mask is perfectly centrosymmetric, which is not the case for the
FQPM. Indeed, from this system of equations, it can be shown
that the simple law

ΔIθ = βT 3
θ (13)
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is sufficient to describe the relation between the tip-tilt and the
asymmetry, as soon as the differential intensity ΔIθ is measured
along the axis of the applied tip-tilt Tθ. In this case, the differ-
ential intensity measured in the orthogonal direction, ΔIθ+π/2, is
indeed zero. The direction of the tip-tilt can be inferred from
the ΔIx and ΔIy measurements: tan θ = ΔIy/ΔIx, implying that
ΔIθ = (ΔI2

x + ΔI2
y )1/2. In other words, it means that the cross-

terms TxT 2
y and TyT 2

x in Eq. (10) are not due to a cross-talk be-
tween the two axes, as in the case of the FQPM, but are rather
due to a change of reference axes.

3. Experimental validation

The model describing the relation between the tip-tilt amount
and the asymmetry in the VC image has been validated based on
experimental data. Test campaigns were indeed carried out for
characterizing new-generation L-band AGPMs recently manu-
factured at Uppsala Universitet (Vargas Catalan et al., in prep).

These campaigns have been conducted on the YACADIRE
bench at LESIA (Observatoire de Paris). This bench was used to
characterize the coronagraphic masks for SPHERE (Boccaletti
et al. 2008) and thus mimics its optical layout ( f /40 converging
beam at the focal plane). We used a circular nonobstructed pupil
and a circular Lyot stop (radius downsized by 80% with respect
to the entrance pupil radius). For the testing of the AGPMs, a
cold L-band spectral filter was installed in the camera enclosure.
The source is a Tungsten lamp, feeding a single-mode fiber. The
bench layout is detailed in Delacroix et al. (2013), who report on
the first laboratory characterization of L-band AGPMs.

The AGPM was first centered in x and y with respect to the
beam by minimizing the flux integrated by the camera. The posi-
tion along the optical axis was also optimized. Sets of 50 images
were taken for different positions of the AGPM along the x axis.
The ΔIx and ΔIy values are measured for every image. We em-
phasize that translating the AGPM in the focal plane does not
have the same effect on the coronagraphic image as a tilted wave-
front hitting the mask. The image shape is affected in the same
way, but it remains centered on the same position, while a tilted
wavefront induces an additional translation of the image. This
has been taken into account in the data processing, in which the
quadrants were shifted by the number of pixels expected for the
corresponding tip-tilt. The Tx and Ty are estimated for each im-
age using Eq. (12). For one position, the final tip-tilt estimates
result from the mean of the 50 estimates, and the error bar from
their standard deviation.

The results are shown in Fig. 4. The Tx estimates are in
agreement with the true tip-tilt for a range of around ±0.5 λ/D
from the center, where the estimations start to diverge from the
expected value by more than their error bar. While Ty = 0 was
expected for the other axis, it seems that the position in that di-
rection was not optimal and that the AGPM was probably off by
about −0.07 λ/D, corresponding to a shift of 10 μm in the focal
plane. The data set has also been processed to estimate the trans-
mission efficiency as a function of tip-tilt along the x direction.
These results are detailed in Appendix B.2 and show that the
highest extinction rate was obtained at 0.02 λ/D from the posi-
tion that was thought to be optimal during the experiment. This
corresponds to a shift of 3.5 μm in the focal plane.

In conclusion, our results show that the model derived to
retrieve the tip-tilt is valid for a circular nonobstructed pupil.
The post-processing of the images has also shown that the man-
ual optimization of the x and y position of the AGPM might
not be optimal, showing the limit of a manual positioning, as
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Fig. 4. Experimental results for the estimation of the tip-tilt aberration
in one direction (the AGPM has only been translated along the x axis).
Error bars are computed from the standard deviation of 50 values esti-
mated from a sequence of 50 images. The images on the top left corner
of the graph show the mean images of several sequences acquired for
different values of tip-tilt, which are provided on top of each image
in λ/D.

a)

b)

Fig. 5. a) Simulated images for a circular nonobstructed pupil.
b) Simulated images for a circular obstructed pupil (24%). Each row
of images corresponds to simulated coronagraphic PSFs obtained for
different tip-tilt values, from left to right: 0.01, 0.05, 0.10, 0.20,
and 0.40 λ/D. Each image intensity has been normalized by its max-
imum value.

it is currently performed at the telescope. For this particular
experiment, the best manual alignment of the AGPM was off
by 0.02 λ/D and 0.07 λ/D in x and y, respectively. The im-
plementation of an automated method of tip-tilt retrieval based
on the QACITS post-coronagraphic analysis will thus signifi-
cantly improve the vortex phase mask centering on current facil-
ities equipped with a VC mode, and hence enhance the contrast
performance.

4. QACITS on a centrally obstructed pupil

All the considerations from the previous sections are valid for a
circular nonobstructed pupil, however, ground-based telescopes
are usually centrally obstructed by the shadow of the secondary
mirror. In the case of a central obstruction, the field distribution
at the Lyot plane is affected by an additional contribution that
falls inside the geometrical pupil, even for an on-axis source,
thus preventing from a perfect on-axis starlight rejection. This
significantly impacts the final image shape, and in particular the
asymmetry of the image. As illustrated in Fig. 5, the flux gradient
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changes sign for small tip-tilt in comparison with the image pro-
duced by an unobstructed pupil, implying that the model link-
ing the differential intensity and the tip-tilt is different and more
complex. In the following section, we analyze the theoretical
model and adapt our QACITS tip-tilt estimator.

4.1. Analytical derivation of the model

Following the superposition principle, the entrance pupil can be
written down as the sum of a positive contribution for the circular
nonobstructed pupil and a negative contribution for the central
obstruction of radius τ < 1 (the pupil is defined with a radius
of 1 when using Zernike polynomials), that is

Epup = E0
pup + Eobsc

pup = eiφ0 − eiφobsc , (14)

with φ0 = φ as defined in Eq. (3). The phase term

Φobsc = τ
[
TxZ2

( r
τ

)
+ TyZ3

( r
τ

)]
(15)

defines the phase of the component inside the central obstruc-
tion, using scaled Zernike polynomials (defined for r/τ < 1),
such that the total field in the central obstructed area is cancelled
out. As a consequence, the electric field at the Lyot plane (after
the Lyot stop) is composed of all the terms already mentioned
in Eq. (7) and of the additional following terms arising from the
presence of the central obstruction:

Eobsc
Lyot = τ2

(
τ(T 2

x + T 2
y ) − 1

) e2iθ

r2
− τ4

(
Ty + iTx

) e3iθ

r3

+ τ6

⎛⎜⎜⎜⎜⎜⎝T 2
x − T 2

y

4
− iTxTy

⎞⎟⎟⎟⎟⎟⎠ e4iθ

r4
·

(16)

Basically, these terms correspond to the decaying exponen-
tial terms that appear outside the geometrical pupil (see
Appendix A.3 and in particular Eq. (A.18)) of radius ρ, since the
components inside the obstruction are blocked by the Lyot stop.
As a consequence, these terms are defined for r > τ and r < 1,
which are inner and outer diameter of the Lyot stop. The Fourier
transform of a function of the general form eikθ/rk, restrained to
this domain can be written as

F
[
eikθ

rk

]
= πikeikψ [Ak−1(α) − Ak−1(ατ)] , (17)

such that the electric field on the detector due to the central ob-
struction can be written as

Eobsc
det = π

(
1 − τ(T 2

x + T 2
y )

)
e2iψ τ2ΔA1(α) (18)

+ π(iTy − Tx)e3iψ τ4ΔA2(α) (19)

+ π
T 2

x − T 2
y − 4iTxTy

4
e4iψ τ6ΔA3(α), (20)

with ΔAk(α) = Ak(α)−Ak(ατ)/τk−1. Numerical estimations show
that the ΔA1τ

2 component is the dominant term, and the two oth-
ers are significantly smaller in absolute values because of the
factor τ2k (because τ < 1). Since it would be uselessly painful
to derive the complete expression of the intensity recorded by
the detector, we choose to neglect the two weaker terms in the
following computation. In addition, we can approximate the fac-
tor 1 − τ(T 2

x + T 2
y ) ≈ 1, thus assuming that the tip-tilt has a

negligible effect on the light diffracted by the central obstruc-
tion. As a consequence, the intensity on the detector consists
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Fig. 6. Horizontal profile (ψ = 0) for the two asymmetric contributions
in the final image plane, due to the whole pupil (i.e., A2(α)A3(α)) and
to the central obstruction (i.e., ΔA1(α)A2(α)).

of the expression given in Eq. (9) augmented by the following
terms (calculated from the modulus of the first term of Eq. (20)
and cross-terms between the terms of Eq. (8) and first term of
Eq. (20)):

Iobsc
det = π2τ2

[
τ2 × ΔA1(α)2 + (T 2

x + T 2
y ) × ΔA1(α)A3(α)

+
(
(T 2

x − T 2
y ) cos(2ψ) + 2TxTy sin(2ψ)

)
× ΔA1(α)A3(α)

+
(
2Tx cos(ψ) + 2Ty sin(ψ)

)
× ΔA1(α)A2(α)

]
.

(21)

Only the last term of Eq. (21) produces an asymmetric pat-
tern with respect to the x and y axes. The principal lobe of
ΔA1(α)A2(α) has negative values, such that this term is in com-
petition with the asymmetric term arising from the circular unob-
structed pupil (last term of Eq. (9)). This is illustrated in Fig. 6,
showing the horizontal profiles for each contribution. In addi-
tion, the contribution of the central obstruction is weighted by a
coefficient directly proportional to the amount of tip-tilt, while
the contribution of the circular pupil is lessen by the cube of
the amount of tip-tilt. This explains why, for very small tip-tilt,
the asymmetry in the images simulated with an annular pupil
appears with a gradient of opposite sign compared with images
simulated for an unobstructed pupil (Fig. 5). Therefore, the rela-
tion between the tip-tilt and the asymmetry in the image can be
written as

ΔIx = β
(
T 3

x + TxT 2
y

)
+ γTx,

ΔIy = β
(
T 3
y + TyT 2

x

)
+ γTy,

(22)

with β and γ as two real parameters of opposite signs. As the
following section illustrates, the main issue with this model is
that it necessarily limits the range where the standard QACITS
method can be applied because the competition between the two
terms leads to a possible ambiguity to retrieve the tip-tilt from
a single intensity measurement. This model also induces a loss
in dynamic, as the two contributions partially cancel each other.
That is why a dual area QACITS method is proposed in the next
section.

4.2. QACITS in dual areas

As illustrated in Fig. 6, the asymmetric contribution due to the
central obstruction undergoes a sign inversion at 1.6 λ/D, which
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Fig. 7. a) Simulated image for a centrally obstructed pupil (24% of the
diameter pupil) with 0.2 λ/D tip-tilt, showing the spatial flux distri-
bution for the standard, inner, and outer areas. The total image width
is 6 λ/D while the circle has a radius of 2 λ/D. b) The flux repartition
between the inner (blue continuous line) and outer (red dashed line)
areas as a function of tip-tilt (estimated from simulated images).

corresponds to the zero of the A2(α) function. Two areas can thus
be defined in the image: the inner area (r < 1.6 λ/D) and the
outer area (r > 1.6 λ/D). When the outer diameter of the Lyot
stop is downsized, this 1.6 λ/D boundary has to be scaled pro-
portionally (for instance, a Lyot stop downsized by 80% has the
effect of pushing the boundary to 2 λ/D). These areas are shown
on a simulated image in Fig. 7a, highlighting the fact that the in-
tensity gradient has opposite sign depending on the considered
region. Figure 7b shows the flux repartition between these areas
for an unobstructed circular pupil and an obstructed pupil. While
in the ideal unobstructed case, the flux is mostly concentrated in
the central lobe (∼80% of the total flux), a significant portion
of the flux spreads outward in presence of a central obstruction,
making this dual measurement legitimate.

The differential intensities corresponding to the standard
QACITS and to the QACITS split down into inner and outer
areas are shown in Fig. 8 for the case of an annular pupil
(24% obstruction in diameter). While the differential intensities
computed in the standard way show a degeneracy and a limited
amplitude, the intensities restricted to the inner and outer areas
reach higher absolute values. An interesting feature appearing in
these plots is the fact that for small tip-tilt (<0.2 λ/D), the model
can be approximated by the linear part of the model, which dom-
inates over the cubic term. For the sake of simplicity, we use this
approximation thereafter, especially since the system of equa-
tions (Eq. (22)) does not lead to simple analytical solutions.

The β and γ parameters defining the model given in Eq. (22)
have been estimated via simulations for different pupil config-
urations, and in particular different Lyot stop parameter values:
the inner and outer diameter, Lin and Lout, defined as a fraction
of the entrance pupil diameter D. The β and γ parameters cor-
respond to the cubic and linear components, respectively, and
are computed by fitting the simulated points in the least-squares
sense. The values are reported in Table 1. These results show
that the γ parameter weighing the linear part of the model in-
creases with the reduction of the outer diameter of the Lyot stop
mask. This is expected since the flux due to the diffraction by
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Fig. 8. Estimated differential intensities resulting from simulated im-
ages in the case of a pupil centrally obstructed (24% of the full diam-
eter). The solid line curves show the best-fit model in the least-squares
sense (the model consists of a linear and a cubic component), while the
dashed lines only show the linear contribution. The three cases differ in
the area used to compute the differential intensity: standard whole area
(in black), inner (<2λ/D, in blue), or outer area (>2λ/D, in red). The
outer diameter of the Lyot stop is downsized by a factor of 80%, while
the central obstruction diameter is set to 35% (1.45 oversizing factor).

Table 1. β and γ parameters estimated from simulations and based on
the whole central image (standard method) or only on the inner or outer
areas of the image.

Lout Lin Stand. In. area Out. area
(%) (%) β γ βin γin βout γout

100 / 1.08 0.94 0.07
100 24 0.93 –0.04 0.88 –0.10 0.04 0.06
100 35 0.90 –0.04 0.79 –0.10 0.11 0.05
80 24 0.75 –0.05 0.70 –0.13 0.05 0.08
80 35 0.68 –0.05 0.56 –0.11 0.12 0.06

Notes. Different Lyot stop configurations have been simulated, with the
first line corresponding to an unobstructed entrance pupil (hence the
nonspecified inner diameter of the Lyot stop), while all the other cases
result from an annular entrance pupil with 24% central obstruction.

the central obstruction mainly distributes to the area close to the
central obstruction (see the decaying exponential functions of
Eq. (16)), while the tip-tilt energy coming from the whole pupil
is spread over the whole pupil. As a consequence, cropping part
of the outer rim of the pupil implies that the central obstruction
contribution, which is the source of the linear dependency, be-
comes relatively stronger.

The parameters have also been estimated for measurements
restricted to the inner and outer areas. In both cases, the γ pa-
rameter reaches higher values, and thus provides a better dy-
namic in comparison with the values obtained by integrating the
flux in the whole image (standard method). The final estimator is
therefore taken as the average of the inner and outer estimators
based on the linear approximation of the model, and can thus be
written as

Test =
1
2

(
ΔIin

γin
+
ΔIout

γout

)
, (23)

with Test and ΔI defined as vectors with the x and y components
of the tip-tilt estimate and differential intensity measurements,
respectively. The exponents “in” and “out” refer to the area of
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Fig. 9. Tip-tilt residuals obtained for the same simulation parameters as
Fig. 8 (i.e., 24% central obstruction, Lyot stop of 35% inner and 80%
outer diameter).

the image used to integrate the flux, namely inner or outer part.
This average estimator has been applied to simulated images af-
fected by a tip-tilt ranging from 0 to 0.4 λ/D. The tip-tilt residu-
als are reported in Fig. 9. The mismatch between the model and
the linear approximation induces a bias in the inner and outer
estimators. These biases happen to be of opposite sign, and thus
compensate each other at least partially when taking the average.
In practice, this offset is not critical since the QACITS algorithm
is supposed to be used in closed loop control. The results show
that for large tip-tilt amounts, the combined estimator underes-
timates the amplitude, which means that the convergence might
be slower at first.

To conclude, we have derived the theoretical model and
modified the QACITS estimator to make it applicable to the
case of a centrally obstructed aperture. Because the contribution
of the obstruction counterbalances the contribution of the circu-
lar pupil, the validity range is reduced to small tip-tilt amounts
(for tip-tilt <0.2 λ/D, the bias is smaller than 3%). However, the
presence of the central obstruction is responsible for a higher
starlight leakage (at least 5% for a central obstruction of 24% in
diameter), providing a better sensitivity as well as a better dy-
namic due to the linearity of the model, as opposed to the cubic
model in the nonobstructed case.

5. Performance in presence of higher order
aberrations

In practice, real wavefronts are affected not only by tip-tilt but
also by higher order aberrations. Static aberrations due to im-
perfect optics surfaces can be handled by subtracting a refer-
ence image, however, quasi-static speckle patterns may corrupt
the ΔIx and ΔIy measurements. These kinds of aberrations may
be caused by temperature and mechanical drifts, which slowly
evolve with time, and are not sensed by the adaptive optics sys-
tem. In order to quantify the effect of higher order aberrations,
simulations were conducted with phase screens generated from a
power spectral density defined as the inverse power law of expo-
nent 2. This kind of model is typical for fractal finish surface
quality (Church 1988), such as the high quality optics of the
SPHERE instrument (Dohlen et al. 2011). The simulated coron-
agraph is based on a circular entrance pupil obstructed by 24% of
its diameter and a Lyot stop with an oversized central obstruction
of 35% and outer diameter of 80% of the initial entrance pupil.
This corresponds to the typical obstruction and Lyot configura-
tion of the NIRC2 instrument at the Keck telescope.

Every phase screen is drawn randomly. The tip-tilt compo-
nent is estimated with a projection onto the base of Zernike poly-
nomials and subtracted. A hundred tip-tilt values ranging from 0
to 0.4 λ/D are uniformly drawn and applied to the wavefront in
the horizontal direction (orientation angle θ = 0). The tip-tilt am-
plitude and orientation angle are then estimated from the image
with the dual QACITS method. The final estimate is computed
from the average of both estimators using the inner (<2 λ/D) and
outer part of the image (2 λ/D < α < 3 λ/D). As shown in the
previous section, for small tip-tilt values (<0.2 λ/D), the relation
between the asymmetry in the image and the tip-tilt amount can
be approximated by a linear function, whose proportionality fac-
tors, γ, are given in Table 1, i.e., γin = −0.11 and γout = 0.06 in
the configuration used in our simulations. The results are shown
in Fig. 10. Different aberration levels have been simulated, from
δrms = λ/104 to δrms = λ/10. As expected, for large tip-tilt
amounts (>0.2 λ/D), the model is not valid any more and a bias
appears, in particular, in the amplitude estimation.

The rms values of the tip-tilt amplitude residuals reported
in Fig. 11 have therefore been computed on the reduced range
of tip-tilt <0.2 λ/D. These results show that in the small tip-tilt
regime and for very low aberration levels (δrms < λ/300), the
bias due to the linear approximation dominates the speckle noise,
and limits the accuracy of the estimation to 2.2 × 10−3 λ/D. For
higher aberration levels, the accuracy is dominated by the effect
of the aberration, and the tip-tilt residual rms increases linearly
with the wavefront error rms, expressed as a fraction of wave-
length. This is observed for the amplitude as well as for the ori-
entation angle (the slope of the best-fit models drawn in Fig. 11
in log–log scale is 1.0 for both cases).

These results illustrate the stability level we can expect from
a control loop based on the QACITS technique when higher or-
der aberrations affect the PSF shape. The tip-tilt affecting the
beam can be estimated with a precision better than 10−2 λ/D
and 5 × 10−2 λ/D in presence of wavefront errors up to δrms =
λ/70 and δrms = λ/14, respectively (corresponding to ∼50 nm
rms and ∼270 nm rms at 3.75μm). However, quasi-static speck-
les tend to evolve slowly with time (i.e., on minute timescales).
Therefore, in practice, two consecutive images are not com-
pletely decorrelated, unlike our set of simulated phase screens,
and in this case part of the high order aberration impact can be
avoided by subtracting a reference image, obtained for the best
centering of the coronagraphic mask.

6. Conclusions and prospects

We have described the QACITS technique for the vortex coro-
nagraph, a method originally introduced in the case of the four-
quadrant phase mask (Mas et al. 2012) and a circular nonob-
structed aperture. We derived the analytical model for the VC
and found a cubic power law, validated by simulations and ex-
perimental results. However, the presence of a central circular
obstruction adds a linear component that induces an intensity
gradient in the opposite direction. In order to tackle this more
complex model, we have introduced the QACITS method in
dual zones (distinguishing the inner lobe from the external re-
gion), which allows the disentanglement of the cubic and linear
components.

Simulations of a typical telescope configuration carried
out in the presence of higher order aberrations show that the
QACITS method provides an estimation of the tip-tilt with a pre-
cision of 10−2 λ/D for wavefront errors amounting to λ/70 rms.
For very low level of aberrations (<λ/300), systematic errors
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Fig. 10. Simulation results of tip-tilt estimation using QACITS with a centrally obstructed pupil in presence of higher order aberrations. Amplitude
residuals are shown on the left, while orientation angle residuals are shown on the right, for different levels of aberrations.
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Fig. 11. Root mean square values for the residual tip-tilt amplitude (left) and orientation angle (right), as a function of the wavefront error. For
the amplitude, the rms is computed over the reduced [0,0.2] λ/D range, where the linear model approximation is valid. The green dashed lines
correspond to a best-fit power law model.

arising from the linear approximation of the model limit the ac-
curacy of the estimation to 2.2 × 10−3 λ/D. The practical im-
plementation may also be limited by other factors, such as the
brightness of the star or the possible asymmetry of the observed
object. This aspect will be discussed in more detail in another
paper.

It can also be emphasized that the Zernike-based analysis,
reported in the appendices, highlights a remarkable feature of the
vortex coronagraph: at first order, small aberrations expressed
as Zernike polynomials simply translate into a complex linear
combination of other Zernike polynomials in the Lyot plane. We
are currently investigating other wavefront sensing techniques
exploiting this characteristic.

To conclude, the QACITS technique offers an easy way to
control the centering of the vortex phase mask directly from the
scientific image, thus avoiding noncommon path errors that an
additional wavefront sensor fails to measure. Its simplicity of
implementation makes QACITS a valuable and directly avail-
able tool for all instruments equipped with a vortex phase mask.
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Appendix A: A Zernike-based analysis

We propose a Fourier-based analysis of beam propagation using
Zernike polynomial decomposition of the wavefront. Our com-
putations are based on the standard layout of a coronagraph, il-
lustrated in Fig. 1.

A.1. The Zernike polynomials

The Zernike polynomials were described by Noll (1976) and are
defined for r ≤ 1 (r = (r, θ) are the polar coordinates) as

Z j(r) =
√

n + 1Rm
n (r)
√

2Cm(θ) for m � 0,

Z j(r) =
√

n + 1R0
n(r) for m = 0,

(A.1)

with

Rm
n (r) =

(n−m)/2∑
s=0

(−1)s(n − s)!
s![(n + m)/2 − s]![(n − m)/2 − s]!

rn−2s. (A.2)

Here, n and m are non-negative integers, satisfying m ≤ n, with
n − m even (in other words, n and m have the same parity). The
azimuthal functions, Cm(θ) = cos mθ and Cm(θ) = sin mθ, are
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Fig. A.1. Qualitative representation of the field distribution at the Lyot plane for a VC of charge lp = 2 (left) and lp = 4 (right), as a function of
the (n,m) integer pair of the input Zernike polynomial Zj. In the column m = 0, only one term defines the field distribution and is depicted in green.
For all the other cases, two terms contribute to the electric field, represented in cyan and pink. In the case in which both terms are superimposed
either outside or inside the pupil, these colors are mixed into a purple hue (see, for instance, the coma for the charge lp = 2 vortex, or the tip-tilt
for the charge lp = 4 vortex).

defined for even and odd j, respectively, thus corresponding to
real symmetric and antisymmetric modes, respectively. The in-
dex j is a usual numbering system for the different modes, which
is used in the following developments. There is no equation link-
ing the index j and the (n,m) integer pairs. The correspondences
for the first 14 polynomials and their usual aberration designa-
tion can be found in Fig. A.1.

The Fourier transform of the Zernike polynomials, noted Ẑ j,
can be written as

Ẑ j(α) =
√

2(n + 1)πCm(ψ)i−m(−1)
n−m

2
2Jn+1(2πα)

2πα
for m � 0,

Ẑ j(α) =
√

n + 1π(−1)
n
2

2Jn+1(2πα)
2πα

for m = 0,

(A.3)

with (α, ψ) = α the polar coordinates in the conjugate plane and
Jn(α) the Bessel function of the first kind.

A.2. The small aberration assumption

Under the small aberration hypothesis, the wavefront at the en-
trance pupil (amplitude of 1, phase φ) can be directly approxi-
mated at first order as a combination of Zernike polynomials,

Epup = exp(iφ) ≈ 1 + iφ = Z1(r) + i
∞∑
j=2

a jZ j(r), (A.4)

where r = (r, θ) are the polar coordinates in the pupil plane
and a j is a set of real coefficients describing the aberrations.

The Fourier transform of Eq. (A.4) leads to the field distribu-
tion in the focal plane and thus consists of a linear combination
of Zernike polynomial Fourier transforms, Ẑ j. We can thus write

Efoc = Ẑ1(α) + i
∞∑
j=2

a jẐ j(α). (A.5)

At the focal plane, the vortex phase mask induces a phase
shift depending on the azimuthal angle ψ. Indeed, Mawet et al.
(2005) have shown that for a perfect vortex phase of topolog-
ical charge lp, the right- and left-handed circular polarization
unit vectors are translated into left- and right-handed circular
polarization vectors, respectively, and are affected by a phase
ramp eilpψ and e−ilpψ, respectively. The coronagraphic effect oc-
curs for any value of lp that is even.

To ease the comparison between the field in entrance pupil
(Epup) and Lyot plane (ELyot), an inverse Fourier transform, noted
F −1, is finally applied, leading to

ELyot = F −1
[
Ẑ1(α)eilpψ

]
+ i

∞∑
i= 2

a jF −1
[
Ẑ j(α)eilpψ

]
= ζ1(r) + i

∞∑
j= 2

a jζ j(r)
, (A.6)

with ζ j = F −1
[
Ẑ j(α)eilpψ

]
denoting the field distribution in the

Lyot plane when the input pupil amplitude is defined by the
Zernike polynomial Z j.

The first term ζ1(r) results from the perfect plane component
(piston mode), which is completely diffracted outside the geo-
metric pupil in the Lyot plane as long as the charge lp is even
(Mawet et al. 2005). In the following section, we derive the gen-
eral expression of ζ j(r) and show that they can be expressed as
Zernike polynomials inside the geometrical pupil.

A.3. The conversion tables Zj → ζj

The expression of ζ j can be expanded using Eq. (A.3), thus
becoming

ζ j(r) = Am
n

∫ ∞

0

2Jn+1(2πα)
2πα

∫ 2π

0
Cmeilpψei2πrα cos(θ−ψ)αdαdψ,

(A.7)
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with

Am
n =
√

2(n + 1)π(−1)
n−m

2 i−m for m � 0,

A0
n =
√

n + 1π(−1)
n
2 for m = 0,

(A.8)

and

Cm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos(mψ) = 1

2 (eimψ + e−imψ) for m � 0 and even j,

sin(mψ) = −i
2 (eimψ − e−imψ) for m � 0 and odd j,

1 for m = 0.

(A.9)

ζ j(r) is thus written as one term (m = 0) or as the sum of two
terms (m � 0). In any case, all these terms have the same form
and can be simplified using the integral form of the Bessel func-
tion that expresses as

Jk(z) =
1

2πik

∫ 2π

0
eikϕeiz cos(ϕ)dϕ, (A.10)

which can also be written in the more convenient manner∫ 2π

0
eikψeiz cos(θ−ψ)dψ = 2πikeikθJk(z), (A.11)

where we identify z = 2πrα, and k = lp when m = 0 or k = lp±m
when m � 0.

Replacing the integral over the variable ψ, the general ex-
pression of ζ j(r) becomes

ζ j(r) = Am
n ×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(I

lp+m
n + I

lp−m
n ) for m � 0 and even j,

−i(I
lp+m
n − I

lp−m
n ) for m � 0 and odd j,

2I
lp
n for m = 0,

(A.12)

with

Ik
n = ikeikθ

∫ ∞

0
Jn+1(2πα)Jk(2παr)dα. (A.13)

According to the Eq. (9) of Noll (1976), the integral can be
linked to the Rm

n (r) function (recalled in Eq. (A.2)), which we
rewrite here in a more general manner (not restricted to the con-
ditions k ≤ n and k and n with the same parity), i.e.,

Ik
n = ikeikθ

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
for |k| ≤ n

⎧⎪⎨⎪⎩ 1
2π (−1)

k−n
2 R|k|n (r) for 0 ≤ r ≤ 1

0 for r > 1

for |k| > n

⎧⎪⎪⎨⎪⎪⎩0 for 0 ≤ r ≤ 1
− 1

2πr (−1)
n−k

2 Rn+1
|k|−1(1/r) for r > 1.

(A.14)

One can note that this integral is discontinuous. The general form
of ζ j(r) can thus be considered as two components that are non-
zero exclusively inside or outside the geometrical pupil, depend-
ing on the comparison of |lp ± m| with n. We can thus write

ζ j = ζ
in
j + ζ

out
j , (A.15)

where ζ in
j and ζout

j represent the contributions of the field in-
side and outside the pupil, respectively. This field distribution
is visually illustrated in Fig. A.1 for a VC of charge lp = 2 and
lp = 4. Note that ζ in

j or ζout
j can be zero. Indeed, if m = 0, there

is only one term (Eq. (A.12)), which is defined either for r > 1

or 0 ≤ r ≤ 1. In particular for the piston term (plane wavefront),
there is no component inside the geometrical pupil, confirming
the theoretical perfect extinction of the VC. Another interesting
example is the case of the defocus and tip-tilt modes: in the case
of the VC of charge lp = 4, both of them fall outside the geo-
metrical pupil, while there is a non-zero contribution inside the
pupil for the VC of charge lp = 2. This result confirms that, for
circular unobstructed pupils, charge 4 vortices are less sensitive
to tip-tilt and defocus aberrations than charge 2 vortices, since at
first order, these modes are completely rejected outside the pupil.

The final expression of ζ j(r) thus depends on the value of m
and the parity of j. As a summary, we can write the following:

– when m = 0, it implies that n is even and hence:

ζ j(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

n + 1eilpθR
|lp |
n (r) for |lp| ≤ n, 0 ≤ r ≤ 1,

−√n + 1 1
r eilpθRn+1

|lp |−1(1/r) for |lp| > n, r > 1.

(A.16)

– when m � 0, we distinguish the cases even and odd j:

ζ j(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T

lp+m
n + T

lp−m
n for even j,

−iT
lp+m
n + iT

lp−m
n for odd j.

(A.17)

with

T k
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
√

n+1
2 eikθR|k|n (r) for |k| ≤ n, 0 ≤ r ≤ 1,

−
√

n+1
2

eikθ

r
Rn+1
|k|−1

(
1
r

)
for |k| > n, r > 1.

(A.18)

We stress that, if they exist, the terms that are defined inside
the geometrical pupil (r ≤ 1) can be expressed as a complex
combination of Zernike polynomials. We can indeed write

eikθR|k|n (r) =
1√

n + 1

⎧⎪⎪⎨⎪⎪⎩
(
Zn,k

even j ± iZn,k
odd j

)
/
√

2 if k = lp ± m � 0,

Zn,0
j if k = lp ± m = 0,

(A.19)

with the ± sign corresponding to the sign of k. As a consequence,
a conversion table can be established, which gives the coeffi-
cients of the Zernike polynomials defining the field after the Lyot
stop (i.e., ζ in

j , since the ζout
j is blocked by the aperture stop) for

a given input Zernike polynomial, Z j, passing through the VC.
These tables are given for the charge lp = 2 and lp = 4 vortices
(Tables A.1 and A.2).

Appendix B: Off-axis transmission

B.1. Analytical function

The Zernike analysis that has been carried for a tilted wavefront
(Eq. (7)) allows the estimation of the transmission efficiency for
an off-axis source close to the center. Because of the central sym-
metry, only one axis is needed to describe the transmission as a
function of the distance from the axis, noted T in rad rms. At the
first order, the total transmission is estimated from Eq. (7) by

ηlp=2(T ) =

∫
pup
|ELyot|2∫

pup
|Epup|2

=
T 2

2
· (B.1)
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Table A.1. Conversion table for the first eight Zernike polynomials for
a charge lp = 2 vortex phase mask.

Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

ζ in
1 = 0 0 0 0 0 0 0 0 0

ζ in
2 =

1
2

i
2 0 0 0 0 0 0 0

ζ in
3 =

i
2 − 1

2 0 0 0 0 0 0 0

ζ in
4 = 0 0 0 i√

2
1√
2

0 0 0 0

ζ in
5 = 0 0 i√

2
0 0 0 0 0 0

ζ in
6 = 0 0 1√

2
0 0 0 0 0 0

ζ in
7 = 0 0 0 0 0 − 1

2
i
2

1
2 − i

2

ζ in
8 = 0 0 0 0 0 i

2
1
2

i
2

1
2

Notes. Only the contribution inside the geometrical pupil is considered
(electric field after the Lyot stop). As a reminder, ζ in

j corresponds to the
contribution of the input Zernike polynomial Zj inside the geometrical
pupil, such that the table should be read line by line (for instance, if the
entrance pupil contains the tip-tilt mode Z2, this translates in the Lyot
plane as ζ in

2 = Z2/2 + iZ3/2).

Table A.2. Same as Table A.1, except for a charge lp = 4 vortex phase
mask.

Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

ζ in
1 = 0 0 0 0 0 0 0 0 0

ζ in
2 = 0 0 0 0 0 0 0 0 0

ζ in
3 = 0 0 0 0 0 0 0 0 0

ζ in
4 = 0 0 0 0 0 0 0 0 0

ζ in
5 = 0 0 0 - 1

2
i
2 0 0 0 0

ζ in
6 = 0 0 0 i

2
1
2 0 0 0 0

ζ in
7 = 0 0 0 0 0 0 0 − 1

2
i
2

ζ in
8 = 0 0 0 0 0 0 0 i

2
1
2

For convenience, the tip-tilt rms in radian, T , can be converted
into an amplitude S in unit of λ/D by means of the relation
T[rad] = S [λ/D] × π/2, leading to

ηlp=2 (S ) =
π2

8
S 2

[λ/D]. (B.2)

This result is slightly different from the formula given by Jenkins
(2008), who derived it empirically. His result is also based on
a square law but the multiplicative factor is different (π2/6 in-
stead of π2/8). Simulations have been performed to compare the
two models. The parameters of the simulations are: a grid size
of 1024 points in width, entrance pupil covering 102 pixels and
a Lyot stop of the same size as the entrance pupil. Particular care
has to be given to numerical errors: most of these errors can be
avoided by computing the entrance pupil profile that leads to per-
fect attenuation of an on-axis source. This is performed by sim-
ulating the propagation of a perfect circular wavefront up to the
Lyot plane, cancelling out the residuals inside the geometrical
pupil (relying on the argument that this is true analytically), and
finally propagating the result backward, down to the entrance
pupil (Krist et al. 2012). The complex profile of the entrance
pupil obtained with this approach is used as the perfect wave-
front. The results of the tip-tilt simulations are shown in Fig. B.1

Fig. B.1. Transmission efficiency as a function of the angular distance
from the center. The crosses result from simulations, while the dashed
line shows the theoretical function as stated by Jenkins (2008) and the
solid line shows the model derived in this work. The two are in agree-
ment for the square dependency, but differ in the multiplicative factor,
equaling π2/6 and π2/8, respectively.
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Fig. B.2. Measured transmission efficiency for an off-axis source
through a VC. The red circles correspond to experimental results, while
the dark dashed line is the best-fit model (polynomial function of even
orders only, up to the 6th order). The light gray dashed line corresponds
to the theoretical model as stated by Eq. (B.2), assuming very small
tip-tilt (it is thus drawn only for absolute tip-tilt <0.3 λ/D). The inner
working angle is graphically represented by dotted lines, which high-
light the transmission limit of 50%, reached for tip-tilt of 0.9 λ/D.

and confirm that for small tip-tilt values, the transmission effi-
ciency follows the function given in Eq. (B.2).

B.2. Experimental results

The experimental data described in Sect. 3 have been processed
to estimate the transmission efficiency as a function of tip-tilt.
The flux has been integrated for each position of tip-tilt in a
square of width 10 λ/D centered on the PSF, and divided by
the value obtained for the AGPM translated by 7 λ/D, a dis-
tance at which the beam is barely affected by the vortex phase
mask. The transmission curve is shown in Fig. B.2. A polyno-
mial function (composed only of even orders up to the 6th be-
cause of the obvious and expected symmetry) has been fitted to
the data points. The best-fit model leads to a position of the min-
imal transmission around −0.02 λ/D, meaning that the position
that was thought to be the optimal was actually off by 3.5 μm
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in the focal plane. The inner-working angle, defined as the dis-
tance where the off-axis transmission reaches 50%, is estimated
to be 0.9 λ/D (with D the diameter of the entrance pupil). The
results were also compared to the theoretical model as derived in
Eq. (B.2), but the sampling was obviously not sufficient at very
small tip-tilt to perform a useful comparison.
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