22,151 research outputs found

    Distribution of Complex and Core Lipids within New Hyperthermophilic Members of the Archaea Domain

    Get PDF
    Core and complex lipids of several new hyperthermophilic archaeal isolates were analyzed. The organisms belong to the Sulfolobales,Archaeoglobus, Pyrobaculum, and Methanococcus. A detailed structural investigation of complex lipids of Pyrobaculum species is reported. The different lipid structures are of help for a rapid and simple phylogenetic classification of the new isolates. They are in agreement with the classification based on other features

    A stacking method to study the gamma-ray emission of source samples based on the co-adding of Fermi LAT count maps

    Full text link
    We present a stacking method that makes use of co-added maps of gamma-ray counts produced from data taken with the Fermi Large Area Telescope. Sources with low integrated gamma-ray fluxes that are not detected individually may become detectable when their corresponding count maps are added. The combined data set is analyzed with a maximum likelihood method taking into account the contribution from point-like and diffuse background sources. For both simulated and real data, detection significance and integrated gamma-ray flux are investigated for different numbers of stacked sources using the public Fermi Science Tools for analysis and data preparation. The co-adding is done such that potential source signals add constructively, in contrast to the signals from background sources, which allows the stacked data to be described with simply structured models. We show, for different scenarios, that the stacking method can be used to increase the cumulative significance of a sample of sources and to characterize the corresponding gamma-ray emission. The method can, for instance, help to search for gamma-ray emission from galaxy clusters.Comment: accepted for publication in Astronomy & Astrophysics, 10 pages, 12 figure

    Block-Transitive Designs in Affine Spaces

    Full text link
    This paper deals with block-transitive tt-(v,k,λ)(v,k,\lambda) designs in affine spaces for large tt, with a focus on the important index λ=1\lambda=1 case. We prove that there are no non-trivial 5-(v,k,1)(v,k,1) designs admitting a block-transitive group of automorphisms that is of affine type. Moreover, we show that the corresponding non-existence result holds for 4-(v,k,1)(v,k,1) designs, except possibly when the group is one-dimensional affine. Our approach involves a consideration of the finite 2-homogeneous affine permutation groups.Comment: 10 pages; to appear in: "Designs, Codes and Cryptography

    Classification of interstitial lung disease patterns with topological texture features

    Full text link
    Topological texture features were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honey-combing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. A set of 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions and the significance thresholds were adjusted for multiple comparisons by the Bonferroni correction. The best classification results were obtained by the MF features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers. The highest accuracy was found for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced topological texture features can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.Comment: 8 pages, 5 figures, Proceedings SPIE Medical Imaging 201

    Probing Sterile Neutrino Parameters with Double Chooz, Daya Bay and RENO

    Full text link
    In this work, we present a realistic analysis of the potential of the present-day reactor experiments Double Chooz, Daya Bay and RENO for probing the existence of sterile neutrinos. We present exclusion regions for sterile oscillation parameters for each of these experiments, using simulations with realistic estimates of systematic errors and detector resolutions, and compare the sterile parameter sensitivity regions we obtain with the existing bounds from other reactor experiments. We find that these experimental set-ups give significant bounds on the parameter \Theta_{ee} especially in the low sterile oscillation region 0.01 < \Delta m_{41}^2 < 0.05 eV^2. These bounds can add to our understanding of the sterile neutrino sector since there is still a tension in the allowed regions from different experiments for sterile parameters.Comment: 12 pages, 5 figure

    Export of Weddell Sea Deep and Bottom Water

    Get PDF
    An extensive set of conductivity-temperature-depth (CTD)/lowered acoustic Doppler current profiler (LADCP) data obtained within the northwestern Weddell Sea in August 1997 characterizes the dense water outflow from the Weddell Sea and overflow into the Scotia Sea. Along the outer rim of the Weddell Gyre, there is a stream of relatively low salinity, high oxygen Weddell Sea Deep Water (defined as water between 0° and −0.7°C), constituting a more ventilated form of this water mass than that found farther within the gyre. Its enhanced ventilation is due to injection of relatively low salinity shelf water found near the northern extreme of Antarctic Peninsula's Weddell Sea shelf, shelf water too buoyant to descend to the deep-sea floor. The more ventilated form of Weddell Sea Deep Water flows northward along the eastern side of the South Orkney Plateau, passing into the Scotia Sea rather than continuing along an eastward path in the northern Weddell Sea. Weddell Sea Bottom Water also exhibits two forms: a low-salinity, better oxygenated component confined to the outer rim of the Weddell Gyre, and a more saline, less oxygenated component observed farther into the gyre. The more saline Weddell Sea Bottom Water is derived from the southwestern Weddell Sea, where high-salinity shelf water is abundant. The less saline Weddell Sea Bottom Water, like the more ventilated Weddell Sea Deep Water, is derived from lower-salinity shelf water at a point farther north along the Antarctic Peninsula. Transports of Weddell Sea Deep and Bottom Water masses crossing 44°W estimated from one LADCP survey are 25 × 106 and 5 × 106 m3 s−1, respectively. The low-salinity, better ventilated forms of Weddell Sea Deep and Bottom Water flowing along the outer rim of the Weddell Gyre have the position and depth range that would lead to overflow of the topographic confines of the Weddell Basin, whereas the more saline forms may be forced to recirculate within the Weddell Gyre

    Long time scale molecular dynamics using least action

    Get PDF
    We present here an efficient method for evaluating molecular trajectories over long time scales. The method is based on optimisation of the path action defined by classical mechanics. We test the technique on non-trivial examples drawn from the literature and discuss the effectiveness of this approach in the study of molecular processes. Many of the present techniques for calculating molecular trajectories are limited computationally. Standard forward integration of Newton's equations of motion yields accurate results for a range of systems whose transition times are many orders of magnitude less than most biologically interesting processes. If one wants to extend these calculations to biologically relevant time scales, it is necessary to develop methodologies which avoid this limitation. The process outlined in this paper has been tested on simple systems using harmonic and Lennard--Jones potential energy functions. The algorithm yields stable trajectories and is adjustable to suite available computational resources. In theory, this algorithm is applicable to any molecular system where the initial and final states are known. This could include investigation of chemical reactions, ligand/receptor binding and work cycles of molecular machinery
    • …
    corecore