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Long time scale molecular dynamics using
least action.

B. A. Gladwin∗ T. Huber†

(Received 8 August 2003)

Abstract

We present here an efficient method for evaluating molecular tra-
jectories over long time scales. The method is based on optimisation
of the path action defined by classical mechanics. We test the tech-
nique on non-trivial examples drawn from the literature and discuss
the effectiveness of this approach in the study of molecular processes.
Many of the present techniques for calculating molecular trajectories
are limited computationally. Standard forward integration of New-
ton’s equations of motion yields accurate results for a range of sys-
tems whose transition times are many orders of magnitude less than
most biologically interesting processes. If one wants to extend these
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calculations to biologically relevant time scales, it is necessary to de-
velop methodologies which avoid this limitation. The process out-
lined in this paper has been tested on simple systems using harmonic
and Lennard–Jones potential energy functions. The algorithm yields
stable trajectories and is adjustable to suite available computational
resources. In theory, this algorithm is applicable to any molecular sys-
tem where the initial and final states are known. This could include
investigation of chemical reactions, ligand/receptor binding and work
cycles of molecular machinery.
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1 Introduction

Mathematical modelling of protein structures aims to understand the link
between structure and function in the biomolecular processes behind cellular
mechanics. Key ideas and methodologies of previous studies have focused on
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‘real time’ molecular transitions using classical dynamics. By simulating the
molecules environment, the dynamics can be approximated by numerically
solving Newton’s equation of motion. These processes provide insight into
the behaviour of simple structures but are limited computationally to time
scales that are often not biologically relevant.

One goal of the present research is to avoid the computational con-
straints that simulation of real time molecular transitions presents. Tech-
niques which have contributed to solving this limitation include Targeted
Molecular Dynamics (tmd) [2, 3], statistical study of rare events [4, 5, 6]
and a group of techniques which we refer to as Action Derived Molecular Dy-
namics (admd) [7, 9, 8]. All of these exploit the knowledge of the molecule’s
starting and ending conformations to target the biologically relevant path-
ways and guide the path search.

admd uses the classical Action of a trajectory as a means of limiting the
path search space. The principle of least Action is attributed to Hamilton
and states that for any real path taken by a system of particles the variation
in the Lagrangian (Kinetic minus potential Energy) is zero.

S ′ = δ

∫ tfinal

tinitial

L(x(t), ẋ(t)) dt . (1)

Mathematically, equation (1) means that the Action will take an extremum
for any real path.

If x(t) is known, the kinetic energy of each particle can be determined
from the first derivative with respect to time of the path and the particles
mass. The potential energy for a particle is more complex as it is dependent
on interactions with all other particles in the system. For this paper we
look at only two particle interaction types. There is no loss of generality by
limiting our discussion in this way providing all relevant interactions can be
expressed in terms of the positions of each particle and physical constants
such as the mass.
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The target of the present work is to calculate long time scale paths in
biomolecular systems. Defining the paths approximately in terms of a con-
trollable set of parameters, a reformulation of the Action principle is applied
which uses the error between the approximate path and the physical path in
place of the Action. By adjusting the path, we find the path which minimises
this error. This approach successfully locates paths satisfying the physical
constraints on the systems. Further work will determine the robustness of
this algorithm for situations of higher complexity.

2 Theory

Olender and Elber [1] reformulate the least action principle in terms of the
error between an approximate path and the physical path. In this section key
elements of this approach are highlighted and the details of our algorithm
discussed.

Any path defined by the boundary conditions [x(tinitial),x(tfinal)] can be
approximated by the set of coordinates xapprox(t). The probability of a tran-
sition between a pair of these coordinates (xapprox(ti),xapprox(tj)) in time
∆t = tj − ti is the conditional probability

Pr (xapprox(tj) | xapprox(ti); ∆t) .

The transition which maximises this probability is the nearest transition to
the true trajectory. By applying this reasoning to each transition along the
trajectory the most likely path is located. If we assume that the error arising
from the discrete step is Gaussian distributed around the true trajectory,
then the error correlation between two steps

〈ε(ti)ε(tj)〉 ≈
σ2δij

∆t
, (2)
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and we define the conditional probability of a particular transition as

Pr(x(ti) | x(ti + ∆t); ∆t)

=

(
1

2π〈ε2〉

)d/2

exp

[
−(x(ti + ∆t)− xapprox(ti + ∆t))2

2〈ε2〉

]
.

(3)

This in turn allows us to formulate an expression for the conditional probabil-
ity of an entire trajectory as the product of all of the transition probabilities
of that trajectory.∏

i

Pr (x(ti) | x(ti + ∆t); ∆t) ≈ exp

[
− 1

2σ2

∫
(ε(t))2 dt

]
. (4)

Equation (4) represents a single exponential function in which the probability
that a certain trajectory is correct expressed in terms of the error from the
true path. The path with zero error at each point will have the highest
probability. Onsager and Machlup state that the probability that a given
trajectory x(t) will satisfy Langevin’s equation of motion is

Pr [x(t)] ∝ exp

[
−S
kBT

]
, (5)

where the kB is Boltzmann’s constant and T is the temperature of the system
and when this expression is compared to equation 4 one directly arrives at
the expression for the Onsager–Machlup Action

S =

∫
(ε(t))2 dt . (6)

It is now necessary to formulate a function for the error in the path. As
in Olender and Elber’s paper we choose to formulate this error based on
Newton’s equations of motion. For the correct trajectory, we assume that
Newton’s equation motion holds at every time point along the path:

Fi −miẍi = 0 .
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In an approximate path the right hand side of this equation is equal to the
error in the path ε(t) which is non-zero and the Action becomes

S =

∫
(F(t)−mẍ(t))2 dt . (7)

The advantage of this formulation over the one proposed by Hamilton is im-
mediately apparent. A physical path will have zero Action rather than being
an extremum and the path search becomes a well defined global minimisa-
tion problem. It remains now to specify an approximate path in terms of a
parameter set and apply standard minimisation algorithms.

In this analysis we choose to expand the path as a linear trend plus a
Fourier sine series:

x(t) = x0 + at +
∑

i

bi sin

(
iπt

τ

)
, (8)

where x0 is the initial positions of the particles, a represents an initial linear
approximation to the path, τ is the total time of the event and b are the
Fourier expansion coefficients for each particle. This type of expansion al-
lows effective filtering of high frequency oscillations by removing terms in the
expansion, and therefore lends itself to the use of hierarchical path searching
regimes. Successive minimisation runs with increasing numbers of expan-
sions allows efficient minimisation by first optimising the gross movements of
the molecule using lower modes and making finer adjustments using higher
modes.

Since the motion of the a particle is governed by its interactions with
surrounding particles, a potential energy function which captures these in-
teractions needs to be specified. As mentioned previously, two standard en-
ergy functions will be investigated. The first of these is the harmonic (bond)
potential function

V(ri, rj) =
1

2
kb (rij − requlib)

2 , (9)



2 Theory C540

where kb is the elastic coefficient of the bond and requlib is the equilibrium
length of the bond.

The second potential function investigated in this paper is the Lennard–
Jones interaction function to simulate non-bonded atom interactions.

V(ri, rj) =
Bij

r12
ij

− Aij

r6
ij

, (10)

where rij = |rj − ri| and interactions exist across all pairs of atoms. Given
these interaction functions we numerically approximate the Action and its
derivative with respect to the expansion coefficients b along a path

S =
∑

t

(F(t)−mẍ(t))2 ,

∂S
∂b

= 2
∑

t

(F(t)−mẍ(t))

(
∂F(t)

∂b
−m

∂ẍ(t)

∂b

)
,

where

F(t) = −∂V(t)

∂x
,

and the ẍ(t) represents the second time derivative of the path given by the
expansion in equation (8). By calculating these derivatives analytically it
is possible to employ standard minimisation algorithms, such as conjugate
gradient minimisation, in order to locate the set of coefficients {b} for which
the Action is zero. The steps of the algorithm are summarised below:

1. Define a initial guess of the path in terms of an adjustable set of pa-
rameters {b}.

2. Specify all the interactions of interest in terms of a potential energy
function V(t).

3. Evaluate the action and its derivatives at each time step from the ex-
pressions (7) and (11) and apply conjugate gradient minimisation in
order to locate the coefficient which minimises the action.
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3 Results and discussion

3.1 1D harmonic potential, two particle system

The first system under investigation is a simple two bodied harmonic os-
cillator. This simplified experiment uses the potential function specified by
equation (9) where the equilibrium separation and the spring constant are
both set to 1. The mass for both particles is 10 and the initial separation be-
tween the particles is zero. In this one space, one time dimensional problem
the particles have been allow to crossover. The initial choice of 20 coefficients
for the path expansion were chosen to be random.

To increase the complexity of the problem, the initial path estimate was
chosen from a two dimensional path search space. Figure 1 shows a plot of
path given by the initial guess in dashed line and the final solution for the
system shown by the solid lines. Initially, there is a larger error between the
physically realisable path and the ‘estimate’. This figure shows a sample of
the trajectory to highlight the periodic final path. It is clear that the algo-
rithm is able to find a path in one dimension which is periodic and satisfies
Newton’s equation of motion. Figure 2 shows progress of the algorithm in
terms of the number of minimisation steps. The path rapidly converges to a
symmetric path with an overall Action of zero. In the next two experiments
we investigate non-linear, more complex situations.

3.2 Lennard–Jones potentials

For the following two experiments, the interaction potential is the non-
bonded Lennard–Jones potential described by equation (10). The particles
start in their force equilibrium positions. This is important for achieving
zero Action pathways in simulations where there is initial rotation.
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Figure 1: Particle path.
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Figure 2: Action against minimisation steps.
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Figure 3: Rotation experiments using Lennard–Jones Potential.

In the both experiments, three particles rotate in a clockwise direction.
The initial and final separations for all pairs of particles in each of the systems
are the same. This is to ensure that the initial and final forces are the same.
Figure 3 shows the experimental setup for the experiments.

3.3 Experiment 2: three particle system

Figure 3 shows the setup for experiment two. All particles are again chosen
to have equal mass and the transition time τ is chosen arbitrarily. Lennard–
Jones coefficients are chosen to maintain the zero initial force condition.
Figure 4 shows the final path converged to for the three particle cluster.
Twenty coefficients were chosen randomly and the result of the minimisation
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Figure 4: Three particle path.

is shown. The difference between the circular path and the path in Fig-
ure 4 is due to the limitations in the approximation used in the expansion.
To investigate this in more detail, Figure 5 compares the force on a single
particle with the difference between that particles path, and a circular path.
Because of the enforced rotation, it was necessary to balance the angular mo-
mentum of the particles with the Lennard–Jones force. The rotation in this
experiment requires an initial force. This initial force shows up in the action
calculation yielding a non-zero final action. For the first simple example, it
is possible to adjust the starting position of the particles in order to achieve
a zero final action. The resulting path will be circular and the particles will
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Figure 5: Comparison of the force on an individual particle and the error
in the approximation.
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stay at their equilibrium positions for the whole transition. The purpose of
placing the particles at equilibrium positions was to ensure that forces at the
boundaries were balanced. This has been done for comparison purposes so
that the simple expansion we have used would be able to closely approximate
the path.

This demonstrates the need for a more accurate expansion by showing
that the inability of the expansion to accurately represent the true path is
the main limitation in achieving a dynamical solution. A more detailed choice
of expansion is needed to improve accuracy of the path and allow broader
application of this method.

3.4 Experiment 3: seven particle system

In this experiment, the three rotating particles from experiment two are
embedded in a symmetrical seven bodied cluster. Figure 3 show the seven
particle cluster used in this experiment and the interaction function used is
given by equation (10). As a first approximation to the path we choose to
use the result achieved form the previous experiment. Figure 6 shows the
converged solution. Convergence to the final solution was much slower than
in the previous examples; however, by applying hierarchical optimisation,
minimisation can be done in a short time. In this case, the final path did not
have zero Action. There are two possibilities for this: either the result was a
local minima in the Action surface; or the expansion was inappropriate for
describing this type of motion.

4 Conclusions

It is clear from this initial analysis that the key limitation encountered in
this approach arises from the expansion choice and not the algorithm. Be-
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Figure 6: Seven particle final path.

cause the second derivative of the expansion shown in equation (8) is initially
zero regardless of the physical system, it is inappropriate when applied to
situations in which forces are acting on the system at the boundaries. In
simple cases it was possible to adjust conditions to achieve the desired zero-
Action path. Recent work of Passerone and Parrinello [7] uses an iterative
process to attain dynamical trajectories from known boundary conditions.
Their approach avoids the use of second derivatives by successive minimisa-
tion steps which progressively optimise the energy and minimise the Action.
We choose to use the analytic second derivative to enable the implementation
of fast optimisation and avoid an iterative scheme.

One of the more apparent advantage to this algorithm is that it is greatly
adjustable to suit the computational limitations. In theory, the coarseness
of the time sampling used in the simulation does not effect the existence of a
stable trajectory. This allows the location in time of key events to discovered
at a coarse grained level and then investigated at greater detail. In practice
this is not the case. Insufficient sample points would potentially avoid key
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events in the transition, resulting in a path which does not capture important
real dynamics accurately. This results from the algorithm searching for paths
whose Action are zero.

A computational advantage to this formulation is its suitability for par-
allel processing as the Action at different time points in the path can be
computed independent of each other. Processors can be assigned individual
time slices Action calculations which then take place simultaneously. Since
the method uses a boundary value approach the transition will always fin-
ish in the final state. This is not a guarantee in a finite time for forward
integration of the equations of motion.

These advantages make this a useful, efficient technique for solving prob-
lems where the boundary information is known.
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