870 research outputs found

    Price Endogeneity and Marginal Cost Effects on Incentive Compatible Stormwater Management Policies

    Get PDF
    Incentive based stormwater management policies offer the prospect of reducing urban stormwater runoff while increasing developer profits. An incentive compatible Stormwater Banking Program (SBP) is presented that allows developers to build at higher residential densities in exchange for including low impact stormwater Best Management Practices (BMPs) in the development’s stormwater management infrastructure. Price endogeneity presents itself when the smaller residential lots created by building at a greater density sell for a lower price than the original, larger lots. Stormwater management authorities must be aware of this and the effects of the program participation fee structure in designing voluntary incentive based policies that meet runoff reduction objectives.Farm Management,

    Incentive Policies to Promote the Use of Enhanced Stormwater BMPs in New Residential Developments

    Get PDF
    A voluntary stormwater management program that is incentive compatible between residential developers and regulators produces an outcome that simultaneously protects/enhances water quality and increases developer profits. Developers pay a participation fee and the collected fees are used to retrofit ineffective stormwater management systems in older neighborhoods to improve water quality.Stormwater Best Management Practices, Economic Incentives, Urban Water Quality, Environmental Economics and Policy, Q25,

    High-CO2 Cloud Radiative Forcing Feedback Over Both Land and Ocean in a Global Climate Model

    Get PDF
    A positive feedback on high-latitude winter marine climate change involving convective clouds has recently been proposed using simple models. This feedback could help explain data from equable climates, e.g., the Eocene, and might be relevant for future climate. Here this convective cloud feedback is shown to be active in an atmospheric GCM in modern configuration (CAM) at CO2 = 2240 ppm and in a coupled GCM in Eocene configuration (CCSM) at CO2 = 560 ppm. Changes in boundary conditions that increase surface temperature have a similar effect as increases in CO2 concentration. It is also found that the high-latitude winter cloud radiative forcing over land increases with increases in surface temperature due to either increased CO2 or changes in boundary conditions, which could represent an important part of the explanation for warm continental interior winter surface temperatures during equable climates. This is due to increased low-level layered clouds caused by increased relative humidity

    Incentive Compatible Policies to Promote Voluntary Use of Enhanced Stormwater BMPs in New Residential Developments

    Get PDF
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    Heat stress on agricultural workers exacerbates crop impacts of climate change

    Get PDF
    The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans' ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3 ∘C warming, relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3 ∘C global warming could reduce labor capacity in agriculture by 30%–50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline

    Comparison of ecosystem processes in a woodland and prairie pond with different hydroperiods

    Get PDF
    Shallow lakes and ponds constitute a significant number of water bodies worldwide. Many are heterotrophic, indicating that they are likely net contributors to global carbon cycling. Climate change is likely to have important impacts on these waterbodies. In this study, we examined two small Minnesota ponds; a permanent woodland pond and a temporary prairie pond. The woodland pond had lower levels of phosphorus and phytoplankton than the prairie pond. Using the open water oxygen method, we found the prairie pond typically had a higher level of gross primary production (GPP) and respiration (R) than the woodland pond, although the differences between the ponds varied with season. Despite the differences in GPP and R between the ponds the net ecosystem production was similar with both being heterotrophic. Since abundant small ponds may play an important role in carbon cycling and are likely to undergo changes in temperature and hydroperiod associated with climate change, understanding pond metabolism is critical in predicting impacts and designing management schemes to mitigate changes

    A Model-data Comparison for a Multi-model Ensemble of Early Eocene Atmosphere-ocean Simulations: EoMIP

    Get PDF
    The early Eocene (~55 to 50 Ma) is a time period which has been explored in a large number of modelling and data studies. Here, using an ensemble of previously published model results, making up EoMIP – the Eocene Modelling Intercomparison Project – and syntheses of early Eocene terrestrial and sea surface temperature data, we present a self-consistent inter-model and model–data comparison. This shows that the previous modelling studies exhibit a very wide inter-model variability, but that at high CO2, there is good agreement between models and data for this period, particularly if possible seasonal biases in some of the proxies are considered. An energy balance analysis explores the reasons for the differences between the model results, and suggests that differences in surface albedo feedbacks, water vapour and lapse rate feedbacks, and prescribed aerosol loading are the dominant cause for the different results seen in the models, rather than inconsistencies in other prescribed boundary conditions or differences in cloud feedbacks. The CO2 level which would give optimal early Eocene model–data agreement, based on those models which have carried out simulations with more than one CO2 level, is in the range of 2500 ppmv to 6500 ppmv. Given the spread of model results, tighter bounds on proxy estimates of atmospheric CO2 and temperature during this time period will allow a quantitative assessment of the skill of the models at simulating warm climates. If it is the case that a model which gives a good simulation of the Eocene will also give a good simulation of the future, then such an assessment could be used to produce metrics for weighting future climate predictions

    Modeling Chronic Traumatic Encephalopathy: The Way Forward for Future Discovery

    Get PDF
    Despite the extensive media coverage associated with the diagnosis of chronic traumatic encephalopathy (CTE), our fundamental understanding of the disease pathophysiology remains in its infancy. Only recently have scientific laboratories and personnel begun to explore CTE pathophysiology through the use of preclinical models of neurotrauma. Some studies have shown the ability to recapitulate some aspects of CTE in rodent models, through the use of various neuropathologic, biochemical, and/or behavioral assays. Many questions related to CTE development however remain unanswered. These include the role of impact severity, the time interval between impacts, the age at which impacts occur, and the total number of impacts sustained. Other important variables such as the location of impacts, character of impacts, and effect of environment/lifestyle and genetics also warrant further study. In this work we attempt to address some of these questions by exploring work previously completed using single and repetitive injury paradigms. Despite some models producing some deficits similar to CTE symptoms, it is clear that further studies are required to understand the development of neuropathological and neurobehavioral features consistent with CTE-like features in rodents. Specifically, acute and chronic studies are needed that characterize the development of tau-based pathology

    The quest to model chronic traumatic encephalopathy: a multiple model and injury paradigm experience

    Get PDF
    Chronic neurodegeneration following a history of neurotrauma is frequently associated with neuropsychiatric and cognitive symptoms. In order to enhance understanding about the underlying pathophysiology linking neurotrauma to neurodegeneration, a multi-model preclinical approach must be established to account for the different injury paradigms and pathophysiologic mechanisms. We investigated the development of tau pathology and behavioral changes using a multi-model and multi-institutional approach, comparing the preclinical results to tauopathy patterns seen in post-mortem human samples from athletes diagnosed with chronic traumatic encephalopathy (CTE). We utilized a scaled and validated blast-induced traumatic brain injury model in rats and a modified pneumatic closed-head impact model in mice. Tau hyperphosphorylation was evaluated by western blot and immunohistochemistry. Elevated-plus maze and Morris water maze were employed to measure impulsive-like behavior and cognitive deficits respectively. Animals exposed to single blast (~50 PSI reflected peak overpressure) exhibited elevated AT8 immunoreactivity in the contralateral hippocampus at 1 month compared to controls (q = 3.96, p \u3c 0.05). Animals exposed to repeat blast (six blasts over 2 weeks) had increased AT8 (q = 8.12, p \u3c 0.001) and AT270 (q = 4.03, p \u3c 0.05) in the contralateral hippocampus at 1 month post-injury compared to controls. In the modified controlled closed-head impact mouse model, no significant difference in AT8 was seen at 7 days, however a significant elevation was detected at 1 month following injury in the ipsilateral hippocampus compared to control (q = 4.34, p \u3c 0.05). Elevated-plus maze data revealed that rats exposed to single blast (q = 3.53, p \u3c 0.05) and repeat blast (q = 4.21, p \u3c 0.05) spent more time in seconds exploring the open arms compared to controls. Morris water maze testing revealed a significant difference between groups in acquisition times on days 22–27. During the probe trial, single blast (t = 6.44, p \u3c 0.05) and repeat blast (t = 8.00, p \u3c 0.05) rats spent less time in seconds exploring where the platform had been located compared to controls. This study provides a multi-model example of replicating tau and behavioral changes in animals and provides a foundation for future investigation of CTE disease pathophysiology and therapeutic development
    corecore