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Abstract
The direct impacts of climate change on crop yields and human health are individually
well-studied, but the interaction between the two have received little attention. Here we analyze the
consequences of global warming for agricultural workers and the crops they cultivate using a global
economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on
humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined
with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural
labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate
change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also
expanding the labor impacts to highlight the potential importance on non-staple crops. We find,
worldwide, labor and yield impacts within staple grains are equally important at+3 ◦C warming,
relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are
dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those
regions, heat stress with 3 ◦C global warming could reduce labor capacity in agriculture by
30%–50%, increasing food prices and requiring much higher levels of employment in the farm
sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices
rising by 5%, relative to baseline.

1. Introduction

The effects of climate change on economic and social
outcomes are increasingly well understood and quan-
tified [1, 2]. In poor countries, a 1 ◦C rise in temper-
ature has been estimated to reduce economic growth
by 1.3 p.p. [2]. Climate impacts in the agricultural
sector have been studied particularly closely because
of its sensitivity to weather. The interaction of cli-
mate change effects on temperature, precipitation
and CO2 concentration are the most relevant and
determine new levels of agriculture productivity and
adaptation at global scale [3]. Many studies show

different effects for staple crops—corn, soy, rice,
and wheat—depending on the geographical loca-
tion and atmospheric CO2 concentrations, e.g. in
Latin America yields decline are projected for wheat,
soy, and corn [4, 5]. At the same time, the agri-
cultural sector is critical for low-income livelihoods
and global food security [6]. This work has, how-
ever, focused almost exclusively on the direct effects
of climate change on crop productivity, i.e. yields
[6–8].

Far less attention has been paid to the human
labor necessary to realize these yields. Yet it is well
known the effects of climate change on human health
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as a social outcome [1, 2]. Labor supply and pro-
ductivity are sensitive to increasing heat stress expec-
ted under climate change [9–11], particularly in sec-
tors heavily reliant on outdoor work [12], such as
agriculture [13]. Heat exposure reduces the capab-
ility for physical activity in across a wide range of
working places [11]. The environmental heat expos-
ure level determines how many hours workers are
capable to develop their activities. A restricted labor
capacity will result in lower wages and output in
economic activities, especially agriculture [14]. This
relationship is explored by Szewczyk et al 2019 [15]
resulting a declined gross domestic production in
most vulnerable regions of the World, such as sub-
Saharan Africa, China and India [15]. Nevertheless,
the relationship we are proposing here has not been
addressed, i.e. the effects of climate change in both,
agricultural and labor productivities, and their inter-
actions. As far we know, this is the first effort to
assess these impacts together at global scale. In addi-
tion, the movement of labor across sectors has been
shown to be responsive to climate impacts [16]. To
develop a more accurate climate impacts assessment
accounting for interactions and spillovers between
regions [17] we explore the interaction between cli-
mate change-induced labor productivity impacts,
agricultural yields, and global economic systems.

The physiological basis for assessing heat stress
and its consequences for human activity is well under-
stood [12, 18]. Heat stress metrics for a variety of dif-
ferent applications have been used to evaluate heat
waves, climate states, and climate change [19–23].
Some studies have assessed projected heat stress dam-
ages from temperature alone [24], but heat stress is
demonstrated to be strongly modulated by humid-
ity [20, 25–27], and radiation as well, so the well-
accepted international standard for heat stress ISO
7243, wet bulb globe temperature (WBGT) includes
all three parameters [12, 28, 29]. Prior efforts pro-
jecting future heat stress have used highly simplified
estimates of WBGT that omit changes in radiation
load in the calculation [30–36]. We assess the sens-
itivity of changes in labor productivity in the future
to different formulations of heat stress, including
explicit calculation of solar radiation, and to differ-
ent functional relationships between labor and heat
stress.

In this paper, drawing on two diverse sets of lit-
erature, we provide an analysis of the consequences
of global warming, both on agricultural labor force
(People) as well as on crop productivity (Plants),
thereby accounting for the interacting effect of cli-
mate change on both land and labor. We integrate
these estimates of direct impacts into the Global
Trade Analysis Project (GTAP) model—a comparat-
ive static, general equilibrium model of global trade,
production and consumption—in order to assess
their relative magnitude and to better understand the

economic importance the impacts of global warm-
ing on labor productivity. We find that the heat stress
impacts on human labor are comparable in mag-
nitude to the far more commonly discussed impact
on plants, and they dominate the combined losses in
someof themost vulnerable parts of theworld—most
notably sub-Saharan Africa.

2. Methods

2.1. Experimental design
The economic impacts of temperature changes on
cropping activity are projected under four experi-
ments at Global level (figure S16). The first experi-
ment, ‘People’, considers losses in agricultural labor
capacity in the presence of climate change as cal-
culated from the ISO standard heat metric, WBGT.
WBGT incorporates both dry (dry bulb temperat-
ure) and moist (wet bulb temperature) components
of heat stress as well as radiative loading as meas-
ured by a globe thermometer. For this experiment, we
are considering only staple crops (wheat, rice, maize
and soybean). We use two alternate approximations
to WBGT, combined with two estimates of the labor
response to changes in WBGT that have been used in
previous studies (details in the section 2.2 below).

The second experiment, ‘Plants’, considers the
impact of global warming on yields of the four most
widely-grown crops (wheat, rice, maize and soybean)
based on a meta-analysis of 1010 point-estimates
from 56 studies compiled for the IPCC 5th Assess-
ment Report [37]. Estimated yield changes by region
include the effects of both warming and CO2 fertil-
ization, some agronomic adaptations, and account
for regional variation in warming at different levels
of global average temperature change (details in the
section 2.3 below and in Moore et al 2017).

Since the vast majority of agronomic studies of
climate effects on crop yields concentrate on these
four staple crops, rather than attempting to synthes-
ize the very limited estimates of yield impacts for the
rest of the agricultural sector, we compare the mag-
nitude of land and labor productivity impacts using
the ‘People’ run. This experiment can be directly
compared with the ‘Plants’ experiment since only
staple crop productivities are perturbed in both. We
also conduct a ‘Combined’ experiment inwhich both
the People and the Plants impacts are simultaneously
implemented—for staple crops only. Finally, to high-
light the potential importance of the impacts on non-
staple crops we add a fourth experiment: ‘People-
AllCrops’ wherein labor productivity is perturbed for
all crops. The yield and labor productivity changes at
different levels of warming (global mean temperat-
ures 1 ◦C through 5 ◦C warmer than today, denoted
+1,+3, etc) are introduced into theGTAP global eco-
nomicmodel as perturbations to regional agricultural
technologies (details in the section 2.4 below).
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We aggregate the GTAP database to 16 regions
and 14 commodities designed to place emphasis on
the agricultural sector, and 5 factors of production:
capital, labor—both skilled and unskilled, land, and
natural resources. Welfare results account for both
the (direct) economic impacts of the productivity
changes themselves, as well as the (indirect) impacts
of the induced changes in prices, production, con-
sumption and trade as a consequence of agricultural
producers’ adjustments to the new environment. This
includes hiring additional workers as well as introdu-
cing labor-saving mechanization.

2.2. Heat stress calculations
Globe thermometer temperatures are not widely
observed or predicted within modeling studies, so
in most studies WBGT is normally approximated.
Two such approximations to WBGT are the simpli-
fied wet bulb globe temperature, sWBGT [38] and
the environmental stress index, ESI [39]. sWBGT
is a function of the vapor pressure which depends
on relative humidity as well as temperature (◦C).
Relative humidity is calculated from instaneous
model output of specific humidity and temperat-
ure (see supplemental materials (available online
at stacks.iop.org/ERL/16/044020/mmedia)). Import-
antly, the sWBGT algorithm discards any expli-
cit information about observed radiative loading,
although it is calibrated to WBGT assuming mod-
erate Sun and a light wind. Thus sWBGT overes-
timates heat load at night, morning, or evening, or
under cloud cover, and underestimates it in full Sun
[38]. This bias has sometimes been accounted for by
assuming shaded conditions and then adding a con-
stant, ad hoc correction factor [40].

In contrast to the sWBGT metric, ESI explicitly
incorporates shortwave radiation (Wm−2) [41]. ESI
is calculated following methods from [39]. sWBGT
and ESI are often linearly correlated in experimental
and observational studies [42], but ESI is expected to
more accurately reflect heat stress over a wider range
of atmospheric conditions and over the diurnal cycle
without ad hoc corrections. In this study we use both
methods: sWBGT for continuity with prior work and
ESI because it more accurately captures radiative heat
load, such as that induced by clouds or time-of-day.
More sophisticated calculations for WBGT are avail-
able [43] and theseWBGT approximations have their
own weaknesses [44]. Nevertheless, our work bal-
ances improving realism in capturing radiative load
in the heat stress calculation, against the availability
of appropriate CMIP5 [45] data.

As described above, while it is well established
that WBGT is a good metric for predicting safe labor
productivity for workers, specific formulations used
to calculate labor rates from WBGT differ substan-
tially [30, 35, 46, 47]. Our approach is to use two

different relationships so that sensitivity to formula-
tion can be explicitly explored. First, we employ the
National Institute for Occupational Safety andHealth
(NIOSH) labor standards for agricultural workers
(400 W) [29, 48], and an associated function for
labor capacity, equation (3) of [49]. This formulation
treats workers operating on an hourly schedule and
is well tested within the context of modern agricul-
tural labor studies, but, as pointed out in empirical
studies, workers today often work beyond the NIOSH
guidelines [50, 51]. Studies like this have been used
to support a less restrictive formulation, for example
the ‘Hothaps’ function of [40, 49] (their equation
(4)). But, this approach is not well posed to deal with
heat stress calculated using longer time intervals (6-
hourly or daily) output by climate models, because
it ignores heat storage and the accumulation of heat
strain. It assumes that workers’ labor capacity asymp-
totes to 10% (i.e. 6 min per h) regardless of condi-
tions, prior heat storage, or of the feasibility of being
onsite not laboring for 54 min out of every hour
all day, under high heat conditions. This is not the
behavior observed in actual agricultural labor stud-
ies, rather workers today under these conditions stop
by 10 or 11am even when their livelihoods depend on
it [50, 51]. Consequently, we have opted to use the
more widely accepted NIOSH standard the basis for
one set of calculations.

Given the challenge of adapting hourly
approaches often used in modern labor and work-
place studies to a very different climate setting, we
employ a second approach, theDunne et al algorithm,
which is a designed to work with spatially and tem-
porally coarse resolution climate model output [30].
Because it is designed to work with coarse (8 h) time
increments, it implicitly incorporates heat accumu-
lation and thus heat strain, which is not accounted
for by the NIOSH approach. The combination of
sWBGT and NIOSH (sWBGT-NIOSH hereafter) is
typical of the empirical labor capacity studies and
provides projections that are more directly compar-
able to international labor standards and future pro-
jections based on them [12, 47, 48]. In contrast, the
combination of ESI andDunne et al [30] (ESI-Dunne
hereafter) utilizes information provided by climate
models for shortwave radiative loading which should
improve actual estimates of heat load and utilizes a
labor reduction metric more tailored for longer time
increments and larger spatial scales consistent with
calculations from climate models. In the absence of
perfect knowledge as to which formulation is better,
we bound the potential uncertainty by using both the
NIOSH and Dunne functions to explore the robust-
ness of our findings to these differences. By using two
possible labor response functions, combined with
two climate signals: ESI and sWBGT, we demonstrate
the effects of structural uncertainty in the response of
labor to heat load.

3
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We calculate the heat stress values from 4× daily
values of temperature, humidity, pressure (sWBGT),
as well as solar radiation (ESI) from 18 CMIP5 mod-
els using three time slices: 1986–2005 baseline (Late
20th Century), 2026–2045 (Mid 21st Century), and
2081–2100 (Late 21st Century). Using 4× daily val-
ues avoids assuming agricultural laborers only work
during the day and allows for the possibility of shift-
ing of work hours into the earlymorning and evening,
an effect alreadywell-documented as an adaptation to
extreme heat [9, 14, 50–53]. For every simulation we
calculate the change in ESI and sWBGT between the
baseline and Late 21st Century and normalize by the
global mean surface (ambient) temperature change
to establish—for each model—the scaled pattern of
change per degree of global warming, a well validated
approach [54, 55]. This scaling is derived from the
RCP8.5 scenario due to the strong radiative forcing
[45], which produces the large climate changes critical
for identifying patterns for scaling techniques. Pattern
scaling is widely used with temperature for remov-
ing the time component from climate simulations to
present changes in terms of global mean surface tem-
perature change [37], and additionally capturesmean
and extreme covariance of temperature and humidity
[56]. This pattern scaling technique [57] normalizes
comparisons between CMIP5 simulations by remov-
ing the effect of different transient climate response
of the different models.

2.3. Meta-analysis of yield response to climate
change
The yield shocks used in this paper are derived from
a database of studies estimating the climate change
impact on yield compiled for the IPCC 5th Assess-
ment Report [7, 8]. Previous work has described
a meta-analysis of this dataset used to construct
regionally-specific, non-linear temperature and CO2

response functions for maize, rice, wheat and soy
[37]. The majority of these observations (85%) are
from process-based agronomic crop models. A pre-
vious systematic comparison found no evidence of
a difference between the yield-temperature response
obtained from process-based as opposed to empirical
crop models [4] and other work has found general
agreement in the yield-temperature response estim-
ated from multiple methods [58–60].

Gridded estimates of yield changes for these
crops, based on this meta-analysis, are produced by
combining the response functions with local tem-
perature changes at different levels of global average
warming, relative to the 1986–2005 baseline, based on
the CMIP5 mean under RCP8.5 [37, 45, 61].

CO2 concentration at each level of warming
is based on fit between temperature change and
CO2 concentration observed in the CMIP5 ensemble
mean under RCP8.5 [37]. At +3 ◦C warming this
gives a CO2 concentration of 728 ppm, substantially
higher than CO2 concentrations at an equilibrium

temperature of +3 degrees. Yield changes from
warming were combined with CO2 fertilization
estimates for C3 and C4 crops described in [37] to
give net yield changes for each grid cell at each level of
warming. Uncertainty in the yield response to warm-
ing and CO2 increase based on statistical error in
the response functions estimated from the meta ana-
lysis were propagated through to the GTAP runs to
give error bars shown in figure 5. This analysis keeps
growing season precipitation fixed at baseline levels.
The original meta-analysis identified a small posit-
ive effect of higher growing-season precipitation that
was marginally statistically-significant [37]. How-
ever, GCM projections of average growing-season
rainfall are highly uncertain and since the estimated
impact is empirically small compared to temperature
and CO2 effects, we omit it for the purposes of this
study.

Yield shocks by crop are aggregated up to the
region-level based on crop growing areas. The yield-
temperature response functions that we employ
also account for some agronomic adaptations, most
prominently shifts in planting date and adoption of
longer growing-season varieties, as documented in
Moore et al (2017), which found the adaptive poten-
tial of these well-studied adjustments appears to be
generally small. However, we are not able to account
for other induced technical change in crop produc-
tion or how that changing technology will affect
factors of production in agriculture. Here we use
annual average temperature change from the CMIP5
ensemble, but show in SI figure S29 that yield shocks,
once aggregated to the regional level, are almost
identical to those restricting temperature changes to
the crop growing seasons.

2.4. GTAPmodeling framework
The standard version of the GTAP model is used in
this paper [62]. We employ a closure which imposes
equilibrium in all themarkets, firms earn zero profits,
the individual countries are on their budget con-
straints, subject to observed borrowing and lending,
and global investment equals global savings. Global
trade equilibrium conditions determine the world
prices for each commodity. In this study, the Global
model is run with 16 regions and 14 commodities
based on GTAP database v9.2 [63] (details in SI tables
S2 and S3). The commodity aggregation is designed
to place an emphasis on the agricultural sector. The
yield and labor changes are implemented in GTAP as
technology shocks in the context of the current world
economy. Yield shocks are Hicks-neutral, such that
farmers employing the same combination of inputs
would experience α% lower output in the presence of
an α% climate-driven yield shock. This significantly
magnifies the climate impacts, compared to the fre-
quently employed assumption by which yield losses
(or gains) are assumed to only affect the productivity
of land [13, 64]. The labor shocks are implemented as
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Figure 1. Sensitivity of Integrated Total Labor Capacity to two heat stress metrics (ESI and sWBGT) and two labor algorithms
(Dunne and NIOSH) for 20th Century and+3 ◦C of warming. (A) 20th Century ESI Dunne; (B) ESI Dunne; (C) 20th Century
sWBGT NIOSH; (D) sWBGT NIOSH. To the right and left of maps are the zonal means (red lines) and global average (straight
red lines).

biased technical change in which case an α% reduc-
tion in labor capacity requires an α% increase in
number of workers required in order to fully offset the
climate impacts absent economic adjustments to the
shock. While aggregate employment in the economy
is fixed, the equilibrium changes in sectoral employ-
ment depend on changes in output level and labor
intensity which, in turn, depends on the the relative
prices of inputs. As labor costs rise, farms seek to sub-
stitute capital for labor based onhistorically estimated
substitution parameters (www.gtap.agecon.purdue.
edu/resources/res_display.asp?RecordID=5736).

3. Results

3.1. Labor losses and agriculture employment
Figure 1 reports labor capacities in our baseline
period and the scaled response of the 18 CMIP mod-
els for 3 ◦C global mean temperature change as meas-
ured by two metrics of heat stress impact on labor
capacity: ESI-Dunne and sWBGT-NIOSH. Patterns
of change are very similar with both approaches pre-
dicting intensification of labor loss in regions with
climatologically high temperatures and humidity,
namely the tropics andmonsoonal regions. The com-
bination sWBGT-NIOSH gives systematically higher
labor reductions. In both metrics labor capacity in
some regions in the deep tropics is reduced substan-
tially, by 30%–50%.

Because of this heat stress, laborers are only able to
work for a fraction of the hours they currently work,
leading to diminished agricultural output in much of
the tropics. To offset what would otherwise lead to a
radical decline in food output and rise in prices, agri-
cultural sector employment expands substantially,
drawing workers away from the non-farm economy.
Under the +3 ◦C scenario, when imposed upon the
current world economy, we project an increase of 69

million unskilled farm workers using the sWBGT-
NIOSH impacts (38 million for ESI-Dunne) which
represents up to 14% of current agricultural employ-
ment (smallholder farms and low skilled labor).More
than 97% of the global increase in agricultural work-
ers arises in just four regions—South Asia (30% of
the total), Southeast Asia (33%), sub-Saharan Africa
(28%), and China (7%) (figure 2). These are also the
regions where agriculture is currently most reliant on
the unskilled workforce. In regions where agriculture
is less reliant on unskilled agricultural workers, such
as the United States, Canada, and Europe the increase
contributes less than 1%of the total. North Africa and
theMiddle East, where low humidity allows people to
work outdoors at higher temperatures, provided they
have adequate hydration, contribute just 0.7% to the
global rise in unskilled farm workers.

3.2. Global effects: output and prices
Despite employment adjustments in the agricultural
sector, diminished labor productivity still results in
lower agricultural output and higher food prices.
Figures 3 reports the reduction in global crop out-
put, as well as the ensuing indirect impacts on pro-
cessed foods and livestock products when agricul-
tural workers in all cropping activities are affected
by heat stress. Even though these results ignore the
direct impacts of climate change on crop yields, the
labor productivity shocks generate very significant
crop price increases—reaching more than 9% at +5
◦C warming. Despite the fact that we do not model
the direct impacts of climate change on the livestock
and processed foods sectors, the indirect effects of
higher crop prices work their way through the food
supply chain and result in price rises for livestock
products and processed foods. Of course, incorpor-
ating the direct impacts of climate change on workers
and animals in the livestock industry would greatly
increase these impacts.
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Figure 2. Change of unskilled employment in agriculture at+3 ◦C, People-AllCrops experiment under different measures of heat
stress. The values are percentage change in the number of agriculture workers (unskilled) relative to the 2011 regional baseline for
all GTAP crops.

3.3. Real earnings from agriculture
The impact of diminished labor capacity due to heat
stress on the real incomes of workers in the agricul-
tural sector depends on how they adapt to the new
work environment. In some regions, there may be
scope for adjusting working hours to avoid the hot-
test parts of the day [14]. However, in much of the
tropics, such adjustment has already taken place [53]
and there is little scope for extending the agricultural
working day without having to work in the dark [14,
65]. The situation is exacerbated by the fact these
hot, stressful environments are long-lasting, persist-
ing into the night. The opportunity for accumulat-
ing heat strain is much greater in these future climate
states. Another important adaptationmargin involves
diversifying activities to engage in more protected
work during the peak hours of the day, or at night
[66]. In this way, agricultural workers could main-
tain their total hours of work in the face of a harsher

climate. In figure 4 we report the impacts on agri-
cultural workers’ effective average daily real earnings
(wages deflated by the cost of living) when they are
unable to make such adjustments. In this case, while
economy-wide hourly wages rise due to the increased
labor demand in agriculture, this is more than offset
by the rise in food prices and farm workers’ dimin-
ished working hours. This decline in effective real
unskilled agricultural earnings (real wages adjusted
for working hours) exceeds 20% in the Southeast Asia
and sub-Saharan Africa regions. One potential labor
market outcome in some regions—particularly where
farming is more commercialized—is that unskilled
farm workers will be able to demand compensation
for the hours they cannot work in the field due to
heat stress. We explore the implications of this ‘wage
premium’ scenario in the SM (figures S27 and S28).
It results in even greater increases in the cost of pro-
duction and food prices.

6



Environ. Res. Lett. 16 (2021) 044020 C Z de Lima et al

−3

−2

−1

0

0 1 2 3 4 5

C
ha

ng
e 

(%
) i

n 
th

e 
gl

ob
al

 o
ut

pu
t

Global output

0

5

10

15

0 1 2 3 4 5
Temperature change (degrees C)

C
ha

ng
e 

(%
) i

n 
th

e 
gl

ob
al

 p
ric

e

Global price

Crops Livestock products Processed food

Figure 3. Global output and price for Crops, Processed Food, and Livestock Products under People-AllCrops experiment
(sWBGT NIOSH) where the error bars represent a range from minimum to the upper decile of modeled results.

3.4. Plants vs people
To put the consequences of these changes in labor
productivity in the context of the far more widely-
studied and well understood changes in crop pro-
ductivity, we turn now to a comparison of the People
and Plants experiments. Since most of the studies
of climate change impacts on crops have focused on
the four major staple crops—maize, soybean, wheat
and rice—we follow this lead and leverage a previ-
ously published meta-analysis of yield impacts of cli-
mate change on these four crops [37]. The exper-
iment in which labor capacity is reduced for these
four staple crops only is dubbed People and we now
proceed to compare the welfare impacts of these
two experiments. The third experiment, Combined,
shows the impact of the simultaneous implement-
ation of the Plants and People experiments on the
current global economy, allowing us to assess what
has been missed in prior studies focusing only on
yields.

Global welfare changes, in $US Billion, for the
three staple crops experiments are provided in figure 5
as well as the economic welfare impacts (% change

relative to the 2011 base year value of crop produc-
tion in each region) for two key regions (The welfare
changes for all regions, measured as equivalent vari-
ation, as well the sector results, are provided in figures
S22–S25 in the SM).

At +3 ◦C warming, relative to our late 20th cen-
tury baseline, the loss in global welfare under the
Combined experiment is about $136 billion, whereas
at the same global mean temperature, and consider-
ing only the Plants experiment, worldwide welfare
decreases by $78 billion. The impacts on unskilled
agricultural workers, who are directly exposed to
solar radiation, heat and humidity, exacerbate the
global results, almost doubling the losses under the
Plants scenario. As temperatures continue to rise,
there are much larger welfare losses, reaching $227
billion at 4 ◦C warming and $410 billion at 5 ◦C,
under the Combined experiment. These losses rep-
resent 27% and 49% of value of the four staple crops
in the base year, respectively. At higher temperatures,
the welfare impact of yield losses grow non-linearly,
widening the gap between those losses and the losses
due to diminished labor capacity.
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Figure 4. Change in average, daily agricultural real incomes at+3 ◦C under the People-AllCrops experiment (sWBGT NIOSH)
for the median case. The error bars represent a range from minimum to the upper decile of modeled results. CEE: Central and
Eastern Europe; CAN: Canada and Rest of North America; WEU: Western Europe; FSU: Former Soviet Union; MDE: Middle
East; JPK: Japan and South Korea; ANZ: Australia and New Zealand; USA: United States; NAF: North Africa; CAM: Central
America; CHI: China plus (China, Hong Kong, North Korea, Macau, Mongolia); SAM: South America; SIS: Small Island States;
SAS: South Asia; SSA: sub-Saharan Africa; SEA: Southeast Asia.

Figure 5. Impacts of temperature change on global welfare ($B) and welfare change (%) for selected regions. The data points
connected by solid lines are the welfare response curves. Yield changes (Plants) are based on our meta-analysis, where error bars
represent the 80% confidence interval of the climate-altered yield distribution arising from uncertainty in the crop response to
temperature and CO2. The labor capacity shocks (People) are the losses in labor capacity owing to climate change relative to a
1986–2005 baseline using an ensemble of 18 CMIP5 models, where the error bars represent an range from minimum to the upper
decile of modeled results. The Combined scenario uses both Plants and People shocks. Note: we omit the error bars for Plants at 4
◦C and 5 ◦C for better visualization. The same figure with all error bars is available in SM.

Considering only the effects of global warming
on agricultural workers (People), the most affected
regions are in the low latitudes, particularly sub-
Saharan Africa and Southeast Asia (figure 6(a)).
Only the United States shows welfare gains under
this experiment, driven by improving terms of trade
(export prices rise, relative to import prices) (SM
figure S8). In contrast, when only Plant impacts are
considered, the welfare losses are concentrated in
North Africa, Middle East and South Asia following
the loss in crop yields due to climate change as well as
adverse terms of trade effects (figure 6(b)).

Overall, the Combined experiment shows
heightened welfare losses in many of the most vul-
nerable regions already expected to be hard-hit
by climate change impacts on staple crop yields
(figure 6(c)). In sub-Saharan Africa and South East
Asia for example, labor impacts constitute the vast
majority (>75%) of the combined climate impacts
on crops. In sub-Saharan Africa, modest gains in
yield due to CO2 fertilization at lower levels of warm-
ing (<2 ◦C) are largely off-set or reversed once labor
impacts are accounted for. Our welfare decompos-
ition (SM figures S8–S10) shows the terms of trade

8
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Figure 6.Welfare changes for 3 ◦C global warming. Changes are relative to the 2011 baseline and employ median estimates of the
yield and labor capacity changes. The maps show the total welfare changes reported as equivalent variation for staples shocks as
follows: (a) labor only (People), (b) crop yields only (Plants), and (c) combined (both People and Plants). Welfare changes are
normalized by the value of crop production of all staple crops. The panel (d) shows the same information in a bar chart where the
diamonds report on the Combined experiment.

effect (export prices, relative to import prices) can
attenuate losses in exporting regions since the world
crop prices are increasing and the net agricultural

exporters tend to benefit from these changes (e.g.
USA, Central America, Latin America). On the other
hand, net importers lose from these price changes
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(e.g. North Africa, Middle East) meaning these
regions are doubly affected—both by lower pro-
ductivity of plants and people in their agricultural
sector, and by higher import prices.

4. Discussion

This paper has focused on the impacts of global
warming on crop and labor productivity and the
implications for human welfare. It has demonstrated
that the emphasis placed to date on the impacts of
warming on plants misses important parts of the lar-
ger picture, as our findings show that the generally-
omitted impacts on labor capacity in agriculture are
equally important at the global level at 3 ◦C warm-
ing, and hit the most vulnerable regions harder than
the more commonly explored yield impacts. We have
erred in the direction of overstating the impact of
climate-driven yield changes on output and economic
welfare by assuming that the yield losses reflect a loss
in the productivity of all inputs, not just land [37].
It is more common in the literature to treat these
impacts as only affecting the productivity of land
inputs [67]. Doing so would have generated far smal-
ler output and welfare impacts for the Plants experi-
ment. Future changes in precipitation patterns, which
are not addressed here, may also affect crop yields,
particularly in rainfed systems, as well as the potential
for expanding irrigated area as a possible adaptation
option.

Not surprisingly, there are significant limitations
to this research. Firstly, while both ESI and sWBGT
produce remarkably similar patterns of change with
global warming, some exceptions exist, especially in
sub-Saharan Africa, where climate models diverge on
predictions of moisture and cloudiness and the dif-
ferent weighting of variables that constitute the met-
rics reflect this divergence differently. Secondly, we
have not fully reflected the potential adaptations to
increased heat stress on farm workers. With the dra-
matic reduction in labor capacity predicted for some
regions—most notably Southeast Asia—one can
expect significant changes in crop production [68].
The most obvious adaptations are those that substi-
tute machinery for people. Agriculture—particularly
the cultivation of field crops—has become highly
mechanized in thewealthiest countries, andwe expect
this trend to continue [69, 70]. Our economic model
incorporates the potential for historically observed
levels of capital-labor substitution in response to the
higher labor costs. However, we have not explored
the full potential for new technologies targeted spe-
cifically to lessening heat stress. To the extent that
the number of unskilled workers in the sector can be
reduced, and the remaining workers can be operat-
ing in a controlled environment (e.g. air condition-
ing), some of the impacts of heat stress on agricultural
productivity can be moderated—although at consid-
erable economic expense.

Even more significant is the limitation presented
by focusing exclusively on crops. It is well-known that
livestock suffer from heat stress [71, 72] and there-
fore global warming will result in diminished live-
stock output in many parts of the world. But more
work must be done to develop well-calibrated mod-
els for the many different species of livestock around
the world before global damages to this sector can be
accurately assessed.

Another limitation stems from the fact that we
impose these climate impacts on the current eco-
nomy, as opposed to a projected future economy.
Projecting the global economy forward to the late
21st century would introduce tremendous uncer-
tainty into the analysis, as such projections are fraught
with challenges. Adding the economic dynamics asso-
ciated with the temperature trajectories explored in
this paper would make it much more difficult to dis-
cern the contribution of the labor impacts explored
here. For this reason, we follow the lead of earlier
studies in analyzing the economic consequences of
alternative climate impact scenarios using the cur-
rent economy as a baseline [37, 73]. We note too that
presentation of welfare changes per degree of global
warming (e.g. figures 3 and 5) differs frommuch pre-
vious impacts work that typically shows the time-
path of impacts under a specified emissions scenario.
Presenting impacts as a function of global temper-
ature change is valuable for parameterizing ‘damage
functions’ required by integrated assessment models
of climate change [17, 37]. However, it is important to
note that warming of 4–5 ◦C above 1980–2005 levels
is very unlikely to be realized in the 21st century, even
under business-as-usual emissions [74].

A final limitation has to do with the fact that
we have only considered the demand side of labor
market—namely how farms will have to adjust in
light of diminished labor productivity. However,
there is also an important supply-side to the heat
stress impacts. When faced with extreme conditions
in outdoor agricultural labor, workers are likely to
prefer to work in other sectors [10]. This will have
the effect of shifting labor supply to agricultural back-
wards, thereby further raising wages and boosting
food prices. Assessing the disutility of farm labor at
elevated temperatures is an area ripe for future empir-
ical work by economists.

5. Conclusions

We have included scaled climate projections from a
multi-model ensemble to project changes in agricul-
tural productivity, sector employment and economic
welfare. These projections include detailed calcula-
tions of changes in labor productivity due to expli-
citly modeled temperature, humidity, and radiation
changes, and how they interact with expected impacts
on the crops themselves. In agreement with most
previous studies we find that the direct impact of 3
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degrees of climate change on crops is most strongly
negative in a swath across North Africa, the Middle
East, and the Indian Subcontinent. In contrast, the
impact of warming on people’s outdoor labor capa-
city is nearly uniformly negative for +3 ◦C warming
and results in much more significant economic losses
in Africa, South- and Southeast Asia.

While the aggregate welfare impacts of heat stress
on the farm labor force are notable, even more strik-
ing is the finding regarding unskilled labor force
requirements in agriculture. With higher temperat-
ures, humidity and radiation conspiring to reduce
individuals’ capacity to work outside, the number
of workers required to maintain adequate food sup-
plies increases dramatically in sub-Saharan Africa
and Southeast Asia, in particular. Some of these
food requirements can be imported from less stressed
regions, and we have factored this shift in interna-
tional trade patterns into our analysis. However, most
food is still produced in the countries where it is con-
sumed and we expect this propensity to persist in the
foreseeable future. Yet in the most stressed regions,
the need for more workers will coincide with agricul-
tural work becoming increasingly unattractive due to
heat stress. This will create a challenge for commercial
agriculture across much of the tropics in the future.

In closing, it is important to note that our
baseline begins from a point wherein 0.6 ◦C of
warming, relative to the pre-industrial period, has
already occurred. This means that the negative effects
from 3 ◦C of warming in our analysis is equival-
ent to 3.6 ◦C of warming relative to a pre-industrial
baseline. This suggests that maintaining Paris agree-
ment goals would avoid the worst impacts on labor
in agriculture. However, it is important to note that
the most negative impacts are focused on regions that
are often poorest and most reliant on exposed, out-
door labor for the cultivation of crops. This distribu-
tional effect is likely to reduce effective daily earnings
and increase inequality [75, 76], which may in turn
enhance the likelihood of conflict [77], increase the
social cost of carbon [78, 79], and provide additional
challenges to achieving the United Nations Sustain-
able Development Goals [76].
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