167 research outputs found

    The periglacial climate and environment in northern Eurasia during the Last Glaciation

    Get PDF

    Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage

    Get PDF
    The effect of the S nutritional status on a plant's capability to cope with Fe shortage was studied in solution cultivation experiments in barley (Hordeum vulgare L. cv. Europa). Barley is a Strategy II plant and responds to Fe deficiency by secretion of chelating compounds, phytosiderophores (PS). All PS are derived from nicotianamine whose precursor is methionine. This suggests that a long-term supply of an inadequate amount of S could reduce a plant's capability to respond to Fe deficiency by limiting the rate of PS biosynthesis. The responses of barley (Hordeum vulgare L. cv. Europa) plants grown for 12 d on Fe-free nutrient solutions (NS) containing 0 or 1.2 mM SO42-, was examined after 24 h or 48 h from transfer to NS containing 1.2 mM SO42-. After the supply of S was restored to S-deprived plants, an increase in PS release in root exudates was evident after 24 h of growth in S-sufficient NS and the increment reached values up to 4-fold higher than the control 48 h after S resupply. When S was supplied to S-deficient plants, leaf ATPS (EC 2.7.7.4) and OASTL (EC 4.2.99.8) activities exhibited a progressive recovery. Furthermore, root HvST1 transcript abundance remained high for 48 h following S resupply and a significant increase in the level of root HvYS1 transcripts was also found after only 24 h of S resupply. Data support the idea that the extent to which the plant is able to cope with Fe starvation is strongly associated with its S nutritional status. In particular, our results are indicative that barley plants fully recover their capability to cope with Fe shortage after the supply of S is restored to S-deficient plants

    CHIRONOMID FAUNA OF CENTRAL YAKUTIAN LAKES (NORTHERN RUSSIA) IN PALAEOENVIRONMENTAL INVESTIGATION

    Get PDF
    -

    CHIRONOMID FAUNA OF CENTRAL YAKUTIAN LAKES (NORTHERN RUSSIA) IN PALAEOENVIRONMENTAL INVESTIGATION

    Get PDF
    -

    Limnological characteristics of lakes in the lowlands of Central Yakutia, Russia

    Get PDF
    The physico-chemical characteristics of 47 lakes from two regions in the lowlands of Central Yakutia (Vilyuysk and Yakutsk), Eastern Siberia were analysed. The aims of this study were (i) to classify the lakes according to their ionic compositions and their nutrient concentrations, (ii) to quantify environmental gradients representing the main directions of variation in the measured variables, and (iii) to explore the relationship between the investigated lakes and their spatial positions. Most of the study lakes are shallow, thermokarst lakes that are slightly alkaline to alkaline. The lakes are predominantly oligotrophic, with some mesotrophic and a few eutrophic exceptions in the study region Vilyuysk. There are four hypertrophic lakes in the study region Yakutsk which are strongly affected by anthropogenic inputs and, in one case, additionally by inputs of water birds. Most part of the variance in the data is represented by major ion concentrations and related variables such as electrical conductivity. There were clear differences in these variables between the lakes of both study regions partly due to regional differences in the climate-induced negative water balance (i.e. evaporation exceeds precipitation). The statistical analysis has shown that a significant part of the variance can be attributed to the type of vegetation in the lake's catchment (11%), to the longitude (7.6%) and to local spatial differences in the lake water chemistry (2.8%). Hypothesis testing indicated that there are significant differences in the mean values of many variables according to vegetation type and to the region where the lakes are located. However, the hypothesis of spatial autocorrelation in the data had to be rejected. The results presented here have important implications for ongoing and future limnological and paleoenvironmental studies in Yakutia. The exploratory analysis has shown that the physico-chemical characteristics of Central Yakutian lakes are mainly influenced by vegetation and climate driven changes that provides the basis for paleoenvironmental studies

    Exploring traditional aus-type rice for metabolites conferring drought tolerance

    Get PDF
    Background: Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. Results: The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. Conclusions: The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.Alberto Casartelli, David Riewe, Hans Michael Hubberten, Thomas Altmann, Rainer Hoefgen and Sigrid Heu
    corecore