17 research outputs found

    Exploring optimal joint operating rules for large-scale inter-basin water transfer projects with multiple water sources, diversion routes, and water demand areas

    No full text
    Study region: The Jiangsu Province section of the South-to-North Water Diversion Project (JS-SNWDP) is an essential section of the SNWDP, which includes multiple water sources, diversion routes, and water demand areas. Study focus: Exploring effective operating rules for the JS-SNWDP is critical to improving its long-term operational performance. However, deriving the operating rule for the JS-SNWDP remains a pressing challenge due to the complexity of its water allocation, which requires trade-offs between multiple water sources and diversion routes when supplying and transferring water. Here, we design a new form of the joint operating rules for the JS-SNWDP that includes water-supply rules and water-transfer rules, and establish a multi-objective optimization operation model by simulation-optimization approach to identify the optimal joint operating rules that contribute to the improvement of water supply reliability and the reduction of operation cost. New hydrological insights for the region: The proposed joint operating rule shows obvious advantages over the regular operating rule, with an increase in the water supply rate (2.0%) while the strongly reduced pumping water (24.7%). Meanwhile, compared with the regular operating rule, the joint operating rule enables a more rational use of the runoff regulation capacity of the lakes, which obviously reducing the pumping water from the Yangtze River and the surplus water in the two lakes obviously. The findings of this study are applicable to improve the operational performance of the JS-SNWDP, and provide a reference for exploring the joint operating rules for other IBWTPs with similar structures

    Study on weak sound signal separation and pattern recognition under strong background noise in marine engineering

    No full text
    The extraction of weak acoustic signals under strong background noise is of great significance in the applications of target identification and localization. In this paper, the pulse signal with high randomness is set as the weak signal sound source, random noise and sine sound are used as the background noise. Under the condition of a signal-to-noise ratio of −20 dB, combined with blind source separation and neural network methods, the collected observation signals are subjected to weak sound signal separation and recognition research. The optimization method of centralization and scaling processing is used to eliminate the unfavorable influence of the uncertainty of the separated signal amplitude caused by the blind source separation method on the pattern recognition. The recognition result is verified by the combination of “weak impulse acoustic signal” and “random noise signal,” and the output vector (0.99 0.01 0.01) approaches (1 0 0), which is recognized as impulse acoustic signal. By combining blind source separation and neural network methods, the separation and identification of weak pulse signals under the condition of a signal-to-noise ratio of −20 dB can be achieved

    3D/3D Bamboo Charcoal/Bi<sub>2</sub>WO<sub>6</sub> Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H<sub>2</sub> Evolution Coupling with Furfuryl Alcohols Oxidation

    No full text
    Photocatalysis is one of the most promising pathways to relieve the environmental contamination caused by the rapid development of modern technology. In this work, we demonstrate a green manufacturing process for the 3D/3D rod-shaped bamboo charcoal/Bi2WO6 photocatalyst (210BC-BWO) by controlled carbonization temperature. A series of morphology characterization and properties investigations (XRD, SEM, UV–vis DRS, transient photocurrent response, N2 absorption-desorption isotherms) indicate a 210BC-BWO photocatalyst with higher charge separation efficiency, larger surface area, and better adsorption capacity. The excellent photocatalytic performance was evaluated by degrading rhodamine B (RhB) (98.5%), tetracycline hydrochloride (TC-HCl) (77.1%), and H2 evolution (2833 ÎŒmol·g−1·h−1) coupled with furfuryl alcohol oxidation (3097 ÎŒmol·g−1·h−1) under visible light irradiation. In addition, the possible mechanisms for degradation of organic pollutants, H2 evolution, and furfuryl alcohol oxidation were schematically investigated, which make it possible to exert photocatalysis by increasing the active radical. This study shows that the combination of bamboo charcoal and bismuth tungstate can be a powerful photocatalyst that rationally combines H2 evolution coupled with furfuryl alcohol oxidation and degradation of pollutants

    Study on acoustic performance of new spiral sound absorbing and insulating metamaterial

    No full text
    Middle and low frequency band sound waves have strong penetration and diffraction abilities during the propagation process, making it difficult to attenuate. The control of middle and low frequency broadband sound waves has become a challenging topic. Therefore, it is necessary to develop new materials or structures with middle and low frequency sound absorption, insulation, and noise reduction functions. The special properties of acoustic metamaterial provide new ideas for the development of sound absorption and insulation. In order to effectively control the noise in the lower frequency band, a new spatial spiral acoustic metamaterial was designed. First, the mechanism of band gap characteristics of a new spatial spiral acoustic metamaterial is analyzed. Then, a new spatial spiral acoustic metamaterial is completed through the finite element software COMSOL Multiphysics and the calculation and analysis of sound absorption and insulation performance in the 100–2500 Hz frequency band are completed. With the help of 3D printing, the preparation of metamaterial is completed, and the comparative experimental study of sound absorption and insulation performance of spiral acoustic metamaterial is carried out to verify the accuracy of the calculation method

    Genetic Mapping of a Candidate Gene <i>ClIS</i> Controlling Intermittent Stripe Rind in Watermelon

    No full text
    Rind pattern is one of the most important appearance qualities of watermelon, and the mining of different genes controlling rind pattern can enrich the variety of consumer choices. In this study, a unique intermittent rind stripe was identified in the inbred watermelon line WT20. The WT20 was crossed with a green stripe inbred line, WCZ, to construct F2 and BC1 segregating populations and to analyze the genetic characterization of watermelon stripe. Genetic analysis showed that the intermittent stripe was a qualitative trait and controlled by a single dominant gene, ClIS. Fine mapping based on linkage analysis showed that the ClIS gene was located on the 160 Kb regions between 25.92 Mb and 26.08 Mb on watermelon chromosome 6. Furthermore, another inbred watermelon line with intermittent stripe, FG, was re-sequenced and aligned on the region of 160 Kb. Interestingly, only two SNP variants (T/C, A/T) were present in both WT20 and FG inbred lines at the same time. The two SNPs are located in 25,961,768 bp (T/C) and 25,961,773 bp (A/T) of watermelon chromosome 6, which is located in the promoter region of Cla019202. We speculate that Cla019202 is the candidate gene of ClIS which controls the intermittent stripe in watermelon. In a previous study, the candidate gene ClGS was proved to control dark green stripe in watermelon. According to the verification of the two genes ClIS and ClGS in 75 watermelon germplasm resources, we further speculate that the ClGS gene may regulate the color of watermelon stripe, while the ClIS gene regulates the continuity of watermelon stripe. The study provides a good entry point for studying the formation of watermelon rind patterns, as well as providing foundation insights into the breeding of special appearance quality in watermelon

    Identification of Human Global, Tissue and Within-Tissue Cell-Specific Stably Expressed Genes at Single-Cell Resolution

    No full text
    Stably Expressed Genes (SEGs) are a set of genes with invariant expression. Identification of SEGs, especially among both healthy and diseased tissues, is of clinical relevance to enable more accurate data integration, gene expression comparison and biomarker detection. However, it remains unclear how many global SEGs there are, whether there are development-, tissue- or cell-specific SEGs, and whether diseases can influence their expression. In this research, we systematically investigate human SEGs at single-cell level and observe their development-, tissue- and cell-specificity, and expression stability under various diseased states. A hierarchical strategy is proposed to identify a list of 408 spatial-temporal SEGs. Development-specific SEGs are also identified, with adult tissue-specific SEGs enriched with the function of immune processes and fetal tissue-specific SEGs enriched in RNA splicing activities. Cells of the same type within different tissues tend to show similar SEG composition profiles. Diseases or stresses do not show influence on the expression stableness of SEGs in various tissues. In addition to serving as markers and internal references for data normalization and integration, we examine another possible application of SEGs, i.e., being applied for cell decomposition. The deconvolution model could accurately predict the fractions of major immune cells in multiple independent testing datasets of peripheral blood samples. The study provides a reliable list of human SEGs at the single-cell level, facilitates the understanding on the property of SEGs, and extends their possible applications
    corecore