13 research outputs found

    Discrimination of Two Cultivars of <i>Alpinia Officinarum</i> Hance Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Chemometrics

    No full text
    Background: Alpinia officinarum Hance is both an herbal medicine and a condiment, and generally has different cultivars such as Zhutou galangal and Fengwo galangal. The appearance of these A. officinarum cultivars is similar, but their chemical composition and quality are different. It is therefore important to discriminate between different A. officinarum plants to ensure the consistency of the efficacy of the medicine. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two cultivars for fast and robust discrimination. Methods: Odor and volatile components of all A. officinarum samples were detected by the E-nose and gas chromatography-mass spectrometry (GC-MS), respectively. The E-nose sensors and GC-MS data were analyzed respectively by principal component analysis (PCA), the correlation between E-nose sensors and GC-MS data were analyzed by partial least squares (PLS). Results: It was found that Zhutou galangal and Fengwo galangal can be discriminated by combining the E-nose with PCA, and the E-nose sensors S2, S6, S7, S9 were important sensors for distinguishing different cultivars of A. officinarum. A total of 56 volatile components of A. officinarum were identified by the GC-MS analysis, and the composition and content of the volatile components from the two different A. officinarum cultivars were different, in particular the relative contents of 1,8-cineole and &#945;-farnesene. The classification result by PCA analysis based on GC-MS data was consistent with the E-nose results. The PLS analysis demonstrated that the volatile terpene, alcohol and ester components primarily interacted with the sensors S2 and S7, indicating that particular E-nose sensors were highly correlated with some aroma constituents. Conclusions: Combined with advanced chemometrics, the E-nose detection technology can discriminate two cultivars of A. officinarum, with GC-MS providing support to determine the material basis of the E-nose sensors&#8217; response

    Triethylsilane introduced precursor engineering towards efficient and stable perovskite solar cells

    No full text
    Perovskite solar cells (PSCs) are believed to be optimistic for commercial deployment soon since the power conversion efficiency of PSCs presently reaches up to 26.10 % due to the intensive efforts these years. The two-step method is comparatively more suitable for scalable perovskite films, where lead halides and ammonium salts are prepared in separate precursors and deposited sequentially. Therefore, the reactivity between these two precursors governs the quality of final perovskite films and the intrinsic non-radiative recombination (NRR) at the perovskite's interfaces. Herein, we empowered both types of precursors, one by one and then simultaneously, with triethylsilane (TES) to investigate its effect on the (FAPbI3)1-x (MAPbBr3)x perovskite's morphological and optoelectronic properties. TES, with ethyl moieties and metalloid center, in ammonium salts delivers homogeneous perovskites' crystals and inhibits the NRR of perovskite films by reducing the defects and trap states. As a result, the optimized devices exhibit not only improved device performance (particularly for the increased fill factors and open circuit voltages) but also enhanced stabilities

    Control of the Crystallization and Phase Separation Kinetics in Sequential Blade‐Coated Organic Solar Cells by Optimizing the Upper Layer Processing Solvent

    No full text
    Sequential deposition of the active layer in organic solar cells (OSCs) is favorable to circumvent the existing drawbacks associated with controlling the microstructure in bulk-heterojunction (BHJ) device fabrication. However, how the processing solvents impact on the morphology during sequential deposition processes is still poorly understood. Herein, high-efficiency OSCs are fabricated by a sequential blade coating (SBC) through optimization of the morphology evolution process induced by processing solvents. It is demonstrated that the device performance is highly dependent on the processing solvent of the upper layer. In situ morphology characterizations reveal that an obvious liquid–solid phase separation can be identified during the chlorobenzene processing of the D18 layer, corresponding to larger phase separation. During chloroform (CF) processing of the D18 layer, a proper aggregation rate of Y6 and favorable intermixing of lower and upper layers results in the enhanced crystallinity of the acceptor. This facilitates efficient exciton dissociation and charge transport with an inhibited charge recombination in the D18/CF-based devices, contributing to a superior performance of 17.23%. These results highlight the importance of the processing solvent for the upper layer in the SBC strategy and suggest the great potential of achieving optimized morphology and high-efficiency OSCs using the SBC strategy

    Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain

    No full text
    The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates

    Optical Properties of Slot‐Die Coated Hybrid Colloid/Cellulose‐Nanofibril Thin Films

    No full text
    Correlating nanostructure and optical properties of thin hybrid films is the crucial ingredient for designing sustainable applications ranging from structural colors in anticounterfeiting to sensors. Here, the tailoring of the refractive index of hybrid cellulose nanofibril/water-dispersed colloidal ink thin films is presented. The authors apply scalable, layer-by-layer slot-die coating for preparing the cellulose nanofibril and hybrid thin films. Making use of the mobility of the polymer chains in the colloids upon annealing, the influence of the different colloid sizes and their glass transition temperature on the refractive index of the hybrid material is shown. The complex refractive indices of the thin films are characterized by spectroscopic ellipsometry and correlated to the different nanostructures of the thin films. The authors find that post-deposition annealing changes the colloidal nanostructure from particulate to agglomerates. Depending on the size of the colloids, imbibition of the colloids into the cellulose nanofibril template is observed. This scalable approach offers new avenues in structural color functional biomaterial hybrid layers.QC 20231030</p

    A study protocol for investigating the sonographic characteristics of neonates with critical illness: an observational cohort study

    No full text
    Background Haemodynamic instability and hypoxaemia are common and serious threats to the survival of neonates. A growing body of literature indicates that critical care ultrasound has become the optimal evaluation tool for sick neonates. However, few studies have described sonographic characteristics of haemodynamics systematically in the neonates with critical illness. This protocol describes a prospective observational cohort study aimed at (1) characterising the sonographic characteristics of the neonates with critical diseases; and (2) assessing the mortality, significant morbidity, utility of vasoactive medications, fluid resuscitation, duration of ventilation, etc.Methods and analysis This is a single-centre, prospective and observational study conducted in Chengdu Women’s and Children’s Central Hospital from 1 December 2022 to 31 December 2027. Neonates admitted to the neonatal intensive care unit will be recruited. After inclusion, the neonates will undergo the neonatal critical care ultrasound. The data collected via case report forms include clinical variables and sonographic measures. The primary outcome is to identify the sonographic characteristics of sick neonates with different diseases, and the secondary outcome is to describe the mortality, significant morbidity, utility of vasoactive medications, fluid resuscitation and duration of ventilation.Discussion Our study provided an organised neonatal critical care ultrasound workflow, which can be applied in practice. Accordingly, this study will first set up large data on the sonographic description of the neonates with critical illness, which can help to understand the pathophysiology of the critical illness, potentially titrating the treatment.Trial registration number Chinese Clinical Trial Registry (ChiCTR2200065581; https://www.chictr.org.cn/com/25/showproj.aspx?proj=184095)
    corecore