36 research outputs found

    Novel bi-allelic variants of CHMP1A contribute to pontocerebellar hypoplasia type 8: additional clinical and genetic evidence

    Get PDF
    Pontocerebellar hypoplasia type 8(PCH8) is a rare neurodegenerative disorder, reportedly caused by pathogenic variants of the CHMP1A in autosomal recessive inheritance, and CHMP1A variants have also been implicated in other diseases, and yet none of the prenatal fetal features were reported in PCH8. In this study, we investigated the phenotype and genotype in a human subject with global developmental delay, including clinical data from the prenatal stage through early childhood. Prenatally, the mother had polyhydramnios, and the bilateral ventricles of the fetus were slightly widened. Postnatally, the infant was observed to have severely delayed psychomotor development and was incapable of visual tracking before 2 years old and could not fix on small objects. The young child had hypotonia, increased knee tendon reflex, as well as skeletal malformations, and dental crowding; she also had severe and recurrent pulmonary infections. Magnetic resonance imaging of the brain revealed a severe reduction of the cerebellum (vermis and hemispheres) and a thin corpus callosum. Through whole exome sequencing and whole genomics sequencing, we identified two novel compound heterozygous variations in CHMP1A [c.53 T > C(p.Leu18Pro)(NM_002768.5) and exon 1 deletion region (NC_000016.10:g.89656392_89674382del)]. cDNA analysis showed that the exon1 deletion region led to the impaired expression, and functional verification with zebrafish embryos using base edition indicated variant c.53 T > C (p.Leu18Pro), causing dysplasia of the cerebellum and pons. These results provide further evidence that CHMP1A variants in a recessive inheritance pattern contribute to the clinical characteristics of PCH8 and further expand our knowledge of the phenotype and genotype spectrum of PCH8

    Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis

    Get PDF
    Nesprins-1 and -2 are highly expressed in skeletal and cardiac muscle and together with SUN (Sad1p/UNC84)-domain containing proteins and lamin A/C form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) bridging complex at the nuclear envelope (NE). Mutations in nesprin-1/2 have previously been found in patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). In this study, three novel rare variants (R8272Q, S8381C and N8406K) in the C-terminus of the SYNE1 gene (nesprin-1) were identified in seven DCM patients by mutation screening. Expression of these mutants caused nuclear morphology defects and reduced lamin A/C and SUN2 staining at the NE. GST pull-down indicated that nesprin-1/lamin/SUN interactions were disrupted. Nesprin-1 mutations were also associated with augmented activation of the ERK pathway in vitro and in hearts in vivo. During C2C12 muscle cell differentiation, nesprin-1 levels are increased concomitantly with kinesin light chain (KLC-1/2) and immunoprecipitation and GST pull-down showed that these proteins interacted via a recently identified LEWD domain in the C-terminus of nesprin-1. Expression of nesprin-1 mutants in C2C12 cells caused defects in myoblast differentiation and fusion associated with dysregulation of myogenic transcription factors and disruption of the nesprin-1 and KLC-1/2 interaction at the outer nuclear membrane. Expression of nesprin-1α2 WT and mutants in zebrafish embryos caused heart developmental and conduction defects that varied in severity. These findings support a role for nesprin-1 in myogenesis and muscle disease, and uncover a novel mechanism whereby disruption of the LINC complex may contribute to the pathogenesis of DCM

    Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Get PDF
    ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates

    Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    No full text
    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype

    HILI inhibits TGF-β signaling by interacting with Hsp90 and promoting TβR degradation.

    Get PDF
    PIWIL2, called HILI in humans, is a member of the PIWI subfamily. This subfamily has highly conserved PAZ and Piwi domains and is implicated in several critical functions, including embryonic development, stem-cell self-renewal, RNA silencing, and translational control. However, the underlying molecular mechanism remains largely unknown. Transforming growth factor-β (TGF-β) is a secreted multifunctional protein that controls several developmental processes and the pathogenesis of many diseases. TGF-β signaling is activated by phosphorylation of transmembrane serine/threonine kinase receptors, TGF-β type II (TβRII), and type I (TβRI), which are stabilized by Hsp90 via specific interactions with this molecular chaperone. Here, we present evidence that HILI suppresses TGF-β signaling by physically associating with Hsp90 in human embryonic kidney cells (HEK-293). Our research shows that HILI mediates the loss of TGF-β-induced Smad2/3 phosphorylation. We also demonstrate that HILI interacts with Hsp90 to prevent formation of Hsp90-TβR heteromeric complexes, and improves ubiquitination and degradation of TβRs dependent on the ubiquitin E3 ligase Smurf2. This work reveals a critical negative regulation level of TGF-β signaling mediated by HILI (human PIWIL2) by its ability to interact with Hsp90 and promote TβR degradation

    Transmembrane-Bound IL-15–Promoted Epithelial-Mesenchymal Transition in Renal Cancer Cells Requires the Src-Dependent Akt/GSK-3β/β-Catenin Pathway

    Get PDF
    Intrarenal interleukin-15 (IL-15) plays a major role controlling epithelial survival and polarization both in physiological and pathologic conditions. Herein, we confirmed that human renal cell carcinomas (RCCs) express a membrane-bound IL-15 isoform displaying an unusual molecular weight of 27 kDa. Its stimulation with soluble IL-15 receptor α chain (s-IL-15Rα) triggers epithelial-mesenchymal transition (EMT) process as shown by the down-regulation of E-cadherin and zona occludens 1 and the up-regulation of vimentin and N-cadherin and promotes the migratory and invasive properties of RCC. S-IL-15Rα treatment triggered the Src/PI3K/Akt/GSK-3β pathway and promoted β-catenin nuclei translocation. Deactivation of this pathway by using Src-specific inhibitor PP2, PI3K inhibitor LY294002, and AKT inhibitor MK2206 hampered β-catenin nuclei translocation and suppressed EMT, migration, and invasion of RCC. S-IL-15Rα treatment also enhanced Src-dependent phosphorylation of focal adhesion kinase (FAK) and extracellular signal–regulated kinase (Erk1/2). FAK knockdown significantly decreased the migration and invasion of RCC, which suggest that Src-FAK signaling was involved in s-IL-15Rα–favored migration and invasion of RCC. At the same time, inhibitors of Erk1/2 also significantly decreased the migration and invasion of RCC but could not reverse s-IL-15Rα–induced EMT. Taken together, our results reveal that Src-dependent PI3K/Akt/GSK3b/β-catenin pathway is required for s-IL-15Ra–dependent induction of EMT in RCC, while Src-FAK and Src-Erk1/2 signaling were involved in s-IL-15Rα–promoted migration and invasion properties of RCC. Our study provides a better understanding of IL-15 signaling in RCC tumor progression, which may lead to novel targeted therapies and provide some suggestions when using IL-15 in clinic

    CFTR Deletion in Mouse Testis Induces VDAC1 Mediated Inflammatory Pathway Critical for Spermatogenesis

    No full text
    <div><p>Cystic fibrosis is the most common genetic disease among Caucasians and affects tissues including lung, pancreas and reproductive tracts. It has been shown that Endoplasmic Reticulum (ER) stress and heat shock response are two major deregulated functional modules related to CFTR dysfunction. To identify the impact of CFTR deletion during spermatogenesis, we examined the expression of spermiogenesis-related genes in the testis of CFTR mutant mice (CF mice). We confirmed expression changes of MSY2, a germ cell specific RNA binding protein, resulting from deletion of CFTR in testis. Furthermore, real time PCR and Western blot results showed that an inflammatory response was activated in CF mice testis, as reflected by the altered expression of cytokines. We demonstrate for the first time that expression of MSY2 is decreased in CF mice. Our results suggest that CFTR deletion in testis influences inflammatory responses and these features are likely to be due to the unique environment of the seminiferous tubule during the spermatogenesis process. The current study also suggests avenues to understand the pathophysiology of CFTR during spermatogenesis and provides targets for the possible treatment of CFTR-related infertility.</p></div
    corecore