26 research outputs found

    Twinning-assisted dynamic adjustment of grain boundary mobility

    Get PDF
    Grain boundary (GB) plasticity dominates the mechanical behaviours of nanocrystalline materials. Under mechanical loading, GB configuration and its local deformation geometry change dynamically with the deformation; the dynamic variation of GB deformability, however, remains largely elusive, especially regarding its relation with the frequently-observed GB-associated deformation twins in nanocrystalline materials. Attention here is focused on the GB dynamics in metallic nanocrystals, by means of well-designed in situ nanomechanical testing integrated with molecular dynamics simulations. GBs with low mobility are found to dynamically adjust their configurations and local deformation geometries via crystallographic twinning, which instantly changes the GB dynamics and enhances the GB mobility. This selfadjust twin-assisted GB dynamics is found common in a wide range of face-centred cubic nanocrystalline metals under different deformation conditions. These findings enrich our understanding of GB-mediated plasticity, especially the dynamic behaviour of GBs, and bear practical implication for developing high performance nanocrystalline materials through interface engineering

    Role of VEGFR2 in Mediating Endoplasmic Reticulum Stress Under Glucose Deprivation and Determining Cell Death, Oxidative Stress, and Inflammatory Factor Expression

    Get PDF
    Retinal pigment epithelium (RPE), a postmitotic monolayer located between the neuroretina and choroid, supports the retina and is closely associated with vision loss diseases such as age-related macular degeneration (AMD) upon dysfunction. Although environmental stresses are known to play critical roles in AMD pathogenesis and the roles of other stresses have been well investigated, glucose deprivation, which can arise from choriocapillary flow voids, has yet to be fully explored. In this study, we examined the involvement of VEGFR2 in glucose deprivation-mediated cell death and the underlying mechanisms. We found that VEGFR2 levels are a determinant for RPE cell death, a critical factor for dry AMD, under glucose deprivation. RNA sequencing analysis showed that upon VEGFR2 knockdown under glucose starvation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are reduced. Consistently, VEGFR2 overexpression increased ER stress under the same condition. Although VEGFR2 was less expressed compared to EGFR1 and c-Met in RPE cells, it could elicit a higher level of ER stress induced by glucose starvation. Finally, downregulated VEGFR2 attenuated the oxidative stress and inflammatory factor expression, two downstream targets of ER stress. Our study, for the first time, has demonstrated a novel role of VEGFR2 in RPE cells under glucose deprivation, thus providing valuable insights into the mechanisms of AMD pathogenesis and suggesting that VEGFR2 might be a potential therapeutic target for AMD prevention, which may impede its progression

    Annihilation Mechanism of Low-Angle Grain Boundary in Nanocrystalline Metals

    No full text
    Due to the high density of grain boundaries (GBs), nanocrystalline metals possess superior properties, including enhanced strength, work hardening, and fatigue resistance, in comparison to their conventional counterparts. The expectation of GB migration is critical for grain coarsening and GB annihilation in these materials, significantly affecting the polycrystalline network and mechanical behavior. Here, we perform molecular dynamics (MD) simulations on gold (Au) nanocrystals containing multiple parallelly arranged GBs, with a focus on the investigation of annihilation mechanisms of low-angle grain boundaries (LAGBs). It is observed that the shear-coupled motion of LAGBs, consisting of dislocations, gives rise to their preliminary migration with the reduced separation distance between GBs. With subsequent GB motion, the LAGBs encountered with neighboring GBs, and can be annihilated by various mechanisms, including dislocations interpenetration, dislocations interaction, or dislocations absorption, depending on the specific configuration of the neighboring GB. These findings enhance our understanding of GB interactions and shed light on the controlled fabrication of high-performance nanocrystalline metals

    Interactions between Dislocations and Penta-Twins in Metallic Nanocrystals

    No full text
    Dislocation interactions with twin boundary (TB) have been well-established in nanotwinned metals. Penta-twins, as an extreme of crystal twinning, are tacitly assumed to be more effective at blocking dislocation motions than conventional single or coplanar nanotwins. However, the mechanism underlying the interactions between dislocations and penta-twins remains largely unclear. Here, by combining in situ transmission electron microscope (TEM) nanomechanical testing and atomistic simulations, we rationalize the fundamental interactions between dislocations and penta-twins in Au nanocrystals. Our results reveal that the interactions between dislocations and penta-twins show some similar behaviors to the ones in the cases of coplanar nanotwins, including dislocation impedance at TBs, cross-slip into the twinning plane and transmission across the TB. In addition, penta-twins also exhibit some unique behaviors during dislocation interactions, including multiple cross-slip, dislocation-induced core dissociation and climb-induced annihilation/absorption at the penta-twin core. These findings enhance our mechanistic understanding of dislocation behaviors in penta-twins, shedding light on the accessible design of high-performance nanomaterials with multi-twinned nanostructures

    Design, Synthesis, and Pharmacology of New Triazole-Containing Quinolinones as CNS Active Agents

    No full text
    Epilepsy and major depressive disorder are the two of the most common central nervous system (CNS) diseases. Clinicians and patients call for new antidepressants, antiseizure medicines, and in particular drugs for depression and epilepsy comorbidities. In this work, a dozen new triazole-quinolinones were designed, synthesized, and investigated as CNS active agents. All compounds reduced the immobility time significantly during the forced swim test (FST) in mice at the dosage of 50 mg/kg. Compounds 3f–3j gave superior performance over fluoxetine in the FST with more reductions of the immobility time. Compound 3g also reduced immobility time significantly in a tail suspension test (TST) at the dosage of 50 mg/kg, though its anti-immobility activity was inferior to that of fluoxetine. An open field test was carried out and it eliminated the false-positive possibility of 3g in the FST and TST, which complementarily supported the antidepressant activity of 3g. We also found that almost all compounds except 3k exhibited antiseizure activity in the maximal electroshock seizure (MES) model at 100 or 300 mg/kg. Compounds 3c, 3f, and 3g displayed the ED50 of 63.4, 78.9, and 84.9 mg/kg, and TD50 of 264.1, 253.5, and 439.9 mg/kg, respectively. ELISA assays proved that the mechanism for the antiseizure and antidepressant activities of compound 3g was via affecting the concentration of GABA in mice brain. The molecular docking study showed a good interaction between 3g and the amino acid residue of the GABAA receptor. Excellent drug-like properties and pharmacokinetic properties of compound 3a–l were also predicted by Discovery Studio. These findings provided a new skeleton to develop agents for the treatment of epilepsy and depression comorbidities
    corecore