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ARTICLE

Twinning-assisted dynamic adjustment of grain
boundary mobility
Qishan Huang 1,2,5, Qi Zhu 2,5, Yingbin Chen2,5, Mingyu Gong3, Jixue Li2, Ze Zhang2, Wei Yang1,

Jian Wang3✉, Haofei Zhou 1✉ & Jiangwei Wang 2,4✉

Grain boundary (GB) plasticity dominates the mechanical behaviours of nanocrystalline

materials. Under mechanical loading, GB configuration and its local deformation geometry

change dynamically with the deformation; the dynamic variation of GB deformability, how-

ever, remains largely elusive, especially regarding its relation with the frequently-observed

GB-associated deformation twins in nanocrystalline materials. Attention here is focused on

the GB dynamics in metallic nanocrystals, by means of well-designed in situ nanomechanical

testing integrated with molecular dynamics simulations. GBs with low mobility are found to

dynamically adjust their configurations and local deformation geometries via crystallographic

twinning, which instantly changes the GB dynamics and enhances the GB mobility. This self-

adjust twin-assisted GB dynamics is found common in a wide range of face-centred cubic

nanocrystalline metals under different deformation conditions. These findings enrich our

understanding of GB-mediated plasticity, especially the dynamic behaviour of GBs, and bear

practical implication for developing high performance nanocrystalline materials through

interface engineering.
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Nanocrystalline materials possess a large volume fraction of
grain boundaries (GBs), which can substantially modify
their physical, mechanical and chemical properties in com-

parison with the coarse-grained polycrystalline counterparts1–3.
However, nanocrystalline materials have long been suffering from
their poor ductility and strain softening4, due to the plastic instability
and thereby premature necking induced by GB deformation5.
Numerous studies have reported the GB-dominated plasticity via GB
migration6, GB sliding7,8, and grain rotation/coalescence9 in nano-
crystalline materials. Nonetheless, the dynamic deformability of GBs
upon mechanical loading has been largely overlooked in these
models. Generally, GB mobility depends not only on the intrinsic
GB geometry and atomic structure (such as curvature, misorienta-
tion, inclination, impurities, etc.)10–13, but also on the local stress
condition and thermo-mechanical loading history6,14,15. During
plastic deformation, GB configuration and deformation geometry
evolve dynamically with the emission or absorption of defects at
GBs. For instance, GB-mediated deformation twinning changes the
GB structure significantly, resulting in an instant modification of GB
dynamics16,17. The variation of GB dynamics should bear an impact
on the GB-dominated deformation and even plastic instability. A
systematic exploration of the dynamic deformability of GBs is thus
critical for a thorough understanding of the plastic instability of
nanocrystalline materials, as well as on the application of GB engi-
neering in nanomaterials design.

In nanocrystalline materials, the twinning-modified GB
dynamics should become pronounced due to an increased ten-
dency for deformation twinning, even in metals with high
stacking fault energies18,19, where GBs act as the effective twin
nucleation sites. In previous studies, deformation twinning is
simply deemed as an intragranular deformation mode that is
important for the mechanical properties and plasticity of nano-
crystalline materials20,21. Given that deformation twinning is a
reorientation process that not only changes the local lattice
orientation dynamically but also tunes the GB structure and
thereby GB kinetics simultaneously, the GB-correlated deforma-
tion twinning may impose critical influences on GB-dominated
deformation16, rather than simply acting as twin nucleation sites.
Such dynamic GB behaviour resembles the common approach of
GB engineering, where vast Σ3 boundaries (in the form
of annealing twins) were introduced into the polycrystalline
materials to regenerate the overall GB networks into a crack-
resistant interconnection with a higher portion of special GBs22.
Hence, the twinning-modified GB structure and geometry
underscore the intrinsic GB dynamics during plastic deformation,
which can greatly tune the GB mobility and facilitate GB plasti-
city, as exemplified by twinning-correlated nanograin coarsening
or coalescence in face-centred cubic (FCC) nanocrystalline metals
under uniaxial tensile loading16, cyclic loading23,24 or creep test25.
A comprehensive understanding of the atomistic mechanism
underlying twinning-assisted GB motion is of general significance
for the plasticity and GB engineering of nanocrystalline materials,
which, however, remains largely elusive due to the lack of
quantitative experimental studies.

Here, the dynamically adjusted deformability of GBs under
mechanical loading has been unambiguously demonstrated in
metallic bicrystals using integrated in situ high-resolution trans-
mission electron microscope (HRTEM) nanomechanical testing
and atomistic simulations. The as-fabricated high-angle GBs
(HAGBs) with relatively low mobility instantly tune their local
lattice orientations and atomic configurations via a GB-stimulated
twinning process. Such self-driven dynamic adjustment of GB
structure changes the GB dynamics with enhanced GB mobility,
leading to an increased GB migration rate in subsequent defor-
mation. A geometry-based model was further proposed to
quantitatively describe the dependence of self-driven dynamic

adjustment of GBs on GB misorientation and inclination, by
considering the resolved shear stresses on twinning and slip
systems. This twinning-assisted adjustment of GB dynamics can
well explain the GB-associated twins in a wide range of FCC
nanocrystalline metals, offering critical insights into GB-
dominated plasticity for GB engineering in nanomaterial design.

Results
Twinning-assisted dynamic adjustment of GB structure and
deformability. Nanoscale Au bicrystals with designed GB struc-
tures provide a model system to study the dynamic deformability
of GBs. Figure 1a shows an as-fabricated Au bicrystal containing
a 23° [1�10] tilt GB, as confirmed by the fast Fourier transform
(FFT) pattern in Fig. 1g. The grains on the left and right sides of
the GB are denoted as G1 and G2, respectively. Accordingly, the
GB between G1 and G2 is denoted as GB1–2, with the corre-
sponding atomistic structure shown in Fig. 1h. Atomistic obser-
vation indicates that GB1–2 contains a few pre-existing GB facets
and a nanograin (G3) with a diameter below 2 nm. Subsequently,
a tensile loading was applied on this Au nanowire along its axial
direction (with an inclination of ~12° to the (002) plane of G2) at
a constant rate of ~0.005 nm s−1.

Upon tensile loading, the deformation of this Au bicrystal was
accommodated by extensive GB migration towards the right, as
presented in Fig. 1b–f and Supplementary Movie 1. To quantify
the GB dynamics under tensile testing, the cumulative GB
migration distance was plotted as a function of the loading time
(Fig. 1k). At the beginning, GB1–2 migrated rightward via the
lateral motion of pre-existing GB facets (Fig. 1a, b), resulting in
the growth of G1. An average GB migration rate of ~0.43 Å s−1

was derived by calculating the tangential slope of this curve
during this stage (Fig. 1k). Subsequently, a deformation twin was
nucleated from the intersection between GB1–2 and the bottom
surface of the bicrystal (Fig. 1b), which extended transversely
along the GB and transformed GB1–2 into GBT-2 (denoting the
newly formed GB between the twin and G2). Associated with the
lateral growth and the thickening of the deformation twin were
the continuously increased segment of GBT-2 and the reduced
segment of GB1–2, leading to the gradual truncation and complete
annihilation of G3 (Fig. 1c and Supplementary Fig. 1). Mean-
while, the pre-existing minor GB facets continued to move along
the main GB and were finally annihilated at the upper free
surface. With the continuous deformation, the twin boundary
(TB) penetrated across the crystal, leading to the full twinning
(Fig. 1d). Associated with the deformation twinning, the
original GB was completely changed to a 47° [1�10] tilt GB
(Fig. 1e). Namely, the (�1�11) plane of the twin was tuned to the
direction almost parallel to the (002) plane of G2, with only a
small misorientation of ~7° (as confirmed by the FFT pattern in
Fig. 1i). The atomistic structure of the GBT-2 in Fig. 1j further
demonstrates the nearly coherent relation between the (002) and
(�1�11) planes across GBT-2. In subsequent deformation, migration
of the newly formed GBT-2 (in a disconnection-mediated mode26)
resulted in a consecutive thickening of the deformation twin
(Fig. 1e, f and Supplementary Fig. 1). Associated with this process
was a sharp increase of the GB migration rate to ~1.4 Å s−1

(Fig. 1k), in comparison to ~0.43 Å s−1 of the original GB1–2. This
quantitative analysis of in situ TEM observations provides solid
evidence for twinning-facilitated dynamic adjustment of GB
structure, which enhances GB mobility with the deformation. In
theory, the set-up asymmetrical tilt high-angle GB1–2 with a
misorientation 23° (Fig. 1g) was unfavoured for GB migration,
according to the traditional shear-coupling model27; however, the
occurrence of deformation twinning tuned the lattice misorienta-
tion (to 47°) across the GB, which greatly promoted the shear-
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coupled GB migration via a disconnection-mediated mechanism,
favouring the growth of the deformation twin. These experi-
mental results clearly demonstrate that GB can dynamically tune
its deformability via self-driven deformation twinning, which
should be strongly correlated with the GB structure and local
stress state.

Microstructural origin of the self-adjustment of GB mobility.
To rationalize the origin of twinning-induced dynamic adjust-
ment of GB mobility, molecular dynamics (MD) simulations were
conducted to explore the governing factors from both dynamic
and energetic perspectives. Simulation was first performed on the
sample with an inclined 23° GB (identical to that of our experi-
ment) under uniaxial tension to validate the twinning-assisted
adjustment behaviour of the GB (Fig. 2a). Upon tension, a few
embryonic deformation twins were nucleated from the GB, tun-
ing the local GB1–2 segments to the GBT-2 between the twin and
G2 grain (Fig. 2b). These TB segments then interlinked together
to promote the growth of the deformation twin, resulting in a
perfect coherent TB accompanied by a concomitant GBT-2 with a
misorientation of 47° (Fig. 2c). To further understand the twin-
ning mechanism, detailed structure evolution of GB1–2 was

analysed. The simulated GB1–2 contained several pre-existing
facets prior to twinning, namely terrace A and facets B, C,
mimicking the GB configuration observed in our experiment
(Fig. 2d). Such GB facets should result from their anisotropic
excessive energies due to the local variation of GB inclination,
which thus are rather common among different GBs28–31. Under
tensile loading, twinning occurred preferentially at the intersec-
tions between the main terrace A and facets B and C (Fig. 2e).
Accompanied with the twinning process, the minor GB facets B
and C propagated separately along the terrace and merged
together before they were annihilated at the free surfaces (Fig. 2e).
Eventually, the nucleated twin expanded laterally along terrace A,
generating a comparatively flat GBT-2 and a perfect TB (Fig. 2f).

Given that the deformation processes of twinning and GB
migration are dominated by shear stress and the individual role of
stress components can always be studied by decoupling, thus, we
further study the origin of the twinning-enhanced GB deform-
ability under shear loading by setting up a simulation model with
a horizontal 23° GB and a sample size of 10 × 10 × 20 nm3

(Fig. 3a). Periodic boundary conditions were imposed along the
GB plane to preclude surface effects. The flat 23° [1�10] GB1–2 was
composed of periodically patterned structural units (see the inset
in Fig. 3a). The same shearing (Fig. 3a) and tension (Fig. 3b)
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loading rates of 1 m s−1 were imposed on the sample with
directions parallel and perpendicular to the GB, respectively.
Under shear loading, deformation instantly induced the rearran-
gement of local atoms in GB1–2. With increasing deformation,
embryonic twins formed at some GB segments and local GB1–2
segments were tuned into the configuration of GBT-2 between the
twin and G2 grain (Fig. 3a, γ= 1.33%). Subsequently, the
remaining segments of GB1–2 were transformed into GBT-2 via
the continuous formation and interlink of atomic twin embryos
(Fig. 3a, γ= 1.67%, Supplementary Movie 2). These twin
segments interlinked together at a shear strain of ~5%, generating
a perfect coherent TB with a concomitant GBT-2 with a tilt angle
of 47° (Fig. 3a, γ= 4.67%). Such twinning-assisted GB structure
adjustment was associated with decreased GB energy from
816.3 mJ m−2 for GB1–2 to 810.3 mJ m−2 for GBT-2. The resultant
GBT-2 migrated steadily in subsequent shear loading (Fig. 3a,
γ= 33.3%), fully consistent with our experimental observations
and MD simulations (Figs. 1 and 2). In contrast, tensile loading
only induced dislocation nucleation from the GB, with negligible
intrinsic GB migration (Fig. 3b). Therefore, simulations combin-
ing tension and shear on this model show consistent twinning
and GB dynamic adjustment behaviour (Supplementary Fig. 2).
These comparisons validate that the twinning-assisted adjustment
of GB deformability is a shear-driven process independent of free
surfaces32.

It is known that deformation twinning is a crystallographic
reorientation process. In nanocrystalline materials, GB can
facilitate deformation twinning via GB decomposition or partial
dislocation emission, which modifies the lattice misorientation

across the GB and thus provides sufficient space to dynamically
adjust the GB deformability. To quantify the dynamic change of
GB deformability, the shear coupling factors of the GBs (defined
as β ¼ vk=v?, where vk is the grain translation velocity and v? is
the GB migration velocity) before and after twinning were
calculated by linear fitting of the relationship between the GB
migration distance and the shear displacement. Supplementary
Fig. 3 illustrates the shear coupling factors for GB1–2 and GBT-2
obtained from our experimental measurements and MD simula-
tions, which quantitatively shows a lower shear coupling factor
for GBT-2 than GB1–2, indicating enhanced shear deformability of
GBT-2. Note that these data points from experiments and
simulations deviate from the theoretical curve predicted by a
previously proposed shear coupling model11 (see details in
Supplementary Discussion 1), due to the influences of tempera-
ture, GB geometry and loading rate, etc. The pre-existing defects
in real samples may also affect GB migration and thus reduce the
shear coupling factor.

Aside from the change of shear coupling factor, the elastic
energies stored in the neighbouring grains also change with the
twinning-modified GB structures. Under steady mechanical
loading, the energy difference across the GB offers a driving
force P for GB migration, which becomes more pronounced in
the presence of local stress concentration at the GB segments. As
shown in Fig. 3c, the difference between the driving forces P for
GBT-2 and GB1–2 becomes more significant with the increasing
normal strain ε (see Supplementary Discussion 2), which partly
rationalizes the higher mobility of GBT-2 than GB1–2 at finite
strain. Moreover, the energy barriers of GB migration before and
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after full twinning have been compared using the nudged elastic
band (NEB) method33, given that GB migration is a thermally
activated deformation process. Starting from the initial GB
structure, four consecutive migration steps along the GB normal
direction have been performed for both GBT-2 and GB1–2 (see the
insets of Fig. 3d). In each unit step, the GB migrated upwards
with a specific distance of approximately 0.3 nm (corresponding
to one-atomic-layer spacing). The average migration energy
barrier of GBT-2 (cyan dotted line in Fig. 3d) is much lower than
that of GB1–2 (red dotted line in Fig. 3d), further supporting the
twinning-enhanced GB migration rate in the present study.

Twinning tendency on the self-driven GB mobility adjustment.
Both in situ observations and atomistic simulations have
demonstrated that the GBs in Au nanocrystal can adjust its
mobility dynamically by GB-mediated deformation twinning. To
validate the generality of this unique GB dynamics, additional
MD simulations were carried out on 〈110〉 tilt GBs with mis-
orientations (θ) ranging from 10° to 70°, while fixing the lattice
orientation of G2 (Fig. 4a). When θ was lower than 16°, the low-
angle GBs (LAGBs) were composed of 1/2 〈110〉 dislocation
arrays and deformed by the collective motion of GB dislocations
along the slip planes in G1 or G2 (Fig. 4e and Supplementary
Fig. 4a), consistent with the theoretical prediction34 and previous
experimental studies35. For GBs with misorientations ranging
from 16° to 36°, a general self-stimulated structural adjustment by
deformation twinning was exhibited, as illustrated by the defor-
mation configurations of different samples in Fig. 4b, c and
Supplementary Fig. 4b. Upon loading, each GB decomposed into
a new GB and a TB to effectively release the deformation-induced

stress accumulation at GB (Supplementary Fig. 5). After twin-
ning, the newly formed GBs could migrate smoothly in sub-
sequent deformation, contributing to an enhanced GB mobility.
When θ exceeded 36°, the self-driven dynamic GB adjustment
was rarely observed (Fig. 4d and Supplementary Fig. 4c). Instead,
dislocation slip was readily activated from the GB due to the
increased resolved shear stress along the slip plane, as exampled
by an example of 50° 〈110〉 tilt GB in Fig. 4d.

Such misorientation dependence of twinning-assisted GB
deformability is related to both the excess energies and the
twinning tendency of GBs. As shown in Fig. 4e, GBs prone to
twinning-facilitated migration typically possess relatively high
excess energies, which furnishes a driving force for the self-
stimulated structural adjustment. It is noticed that some GBs
beyond 36° also possess high excess energies, despite their slip-
controlled behaviour, which can be explained by the lower
twinning tendency. To quantify the twinning tendency towards
the self-adjusted GB dynamics, we developed a geometrical-based
theoretical model considering the resolved shear stresses on the
twinning and slip planes in G1 (see Fig. 4a). According to Fig. 4a-
d, GB-facilitated twinning occurs via the motion of twinning
partials along (111) slip planes in G1 (marked by “Twinning” in
Fig. 4a), while the dislocation emission on (�1�11) planes leads to
slip-governed GB deformation (marked by “Slip” in Fig. 4a).
Thus, the twinning tendency (TT) of a GB is defined as the ratio
between the resolved shear stresses on “Twinning” and “Slip”
planes, i.e., TT= τTwinning=τSlip, which can be further correlated to
the GB misorientation in the expression of:

TT ¼ j cosð2θ � 46�Þ=cosð265� � 2θÞj ð1Þ
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If TT>TTcritical for a given GB, spontaneously adjustment of its
deformation dynamics can occur via deformation twinning, and
the critical twinning tendency TTcritical was determined to be
around 0.93 for Au (see details in Supplementary Discussion 3)35.
This criterion yields a threshold GB misorientation of 35.7°
(Fig. 4e), below which twinning dominates over slip-governed GB
migration, and vice versa, fully consistent with our simulations.

The twinning tendency in Fig. 4e was obtained with the
assumption of a fixed lattice orientation of G2 (Fig. 4a). We
further notice that in our TEM observations and atomistic
simulations (Fig. 2), twinning was revealed to occur and grow
preferentially at the main terrace A, rather than other minor
facets B and C, despite the same misorientation θ= 23°, which
points out the importance of GB inclination on deformation
twinning. To establish the full map of GB self-adjusted dynamic
deformation, the effects of varying inclinations were system-
atically investigated by rotating G2 with respect to the shear
loading direction. Accordingly, the geometry-based theoretical
model of twinning tendency can be extended as

TT ¼ j cosð109:5� � 2φþ θÞ=cosð250:5� � 2φþ θÞj ð2Þ
where φ denotes the actual GB inclination from the symmetrical
GB plane of two grains (see the right inset of Fig. 4f).
Consequently, the terrace A (θ= 23° and φ= 66°) is predicted
to possess a higher twinning tendency, i.e., TT= 1.28, compared

with the minor facets B (θ= 23° and φ= 36°) with TT= 0.53 and
C (θ= 23° and φ= 16°) with TT= 0.38, respectively, which is
consistent with the preferential twinning behaviour of the terrace
A (Fig. 2d–f). The contour map in Fig. 4f further clarifies the
synergistic effects of GB misorientation and inclination on GB
deformation, where the critical value of TT= 0.93 has been
highlighted. An additional series of MD simulations have been
carried out to verify the model for a wide range of misorientations
and inclinations (Supplementary Fig. 6), which have been
superimposed onto the contour map in Fig. 4f. In contrast to
the energetically favourable formation of twins reported in
previous studies36, the structural adjustment of GBs can either
enhance or reduce the GB energy (marked by triangles with
different colours in Fig. 4f), indicating that the twinning-assisted
GB deformability is insensitive to the GB energy variation in the
deformation process. Besides, LAGBs with a misorientation angle
<16° are composed of well-aligned GB dislocations with high
mobility and thus deform via dislocation slip instead of
deformation twinning.

To further validate our geometry-based model, additional
testing was performed on a bicrystal with a flat 87° [1�10]
symmetrical tilt GB at a shear rate of ~0.005 nm s−1 (Fig. 4g and
Supplementary Movie 3). With a theoretical TT of 1.04, the GB is
expected to exhibit a self-adjust dynamic behaviour under shear
loading. Upon deformation, the GB plane rotated counter-
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clockwise for about 13°, aligning the GB parallel to (�1�11) plane of
G1; during this process, the initial GB decomposed into a 22.5°
GB and a concomitant TB, followed by the constant GB
migration in subsequent shear loading (Fig. 4g). MD simulations
in Supplementary Fig. 7 and Supplementary Movie 4 confirm the
same twinning-assisted GB dynamic adjustment, with a GB
energy increase from 785.9 mJ m−2 (for 87° GB) to 805.7 mJ m−2

(for 22.5° GB). Above MD simulations and in situ experiments
have provided a comprehensive understanding of the geometry
effect (including both misorientation and inclination) on self-
adjusted GB mobility. The self-adjust twinning-assisted GB
deformation is general for a wide range of GBs and plays a key
role in tuning the GB structure and mobility. The threshold
misorientation/inclination varies with the local stress state37,
implying that the dynamic GB deformability adjustment is a
stress-dominant process.

Discussion
GB-dominated plasticity has been widely reported in literature,
which exhibited sharply different behaviours under a range of GB
configurations/geometries, including misorientation, inclination,
curvature etc.38,39. However, current theories of GB dynamics
mainly rely on analysis of the original GB geometry, which
cannot reflect the full landscape of GB plasticity in view of the
dynamic evolution of GB structure during deformation. As such,
controversial conclusions exist on the mobility of GBs and the
stability of nanocrystalline materials3,40. For example, several
studies revealed that the HAGBs generally possess higher mobility
than that of the LAGBs41,42, while others reported no clear cor-
relation between misorientation and the mobility of HAGBs40,43.
Our experimental and simulation investigations unambiguously
demonstrated that certain GBs in FCC metallic materials can tune
their deformability dynamically via a self-driven twinning pro-
cess. In this process, GB decomposition stimulates the deforma-
tion twinning, which, in turn, modifies the GB structure and the
associated deformation dynamics, leading to dynamically-
adjusted GB mobility.

More importantly, this self-driven twinning-assisted dynamic
GB plasticity is independent on surface effects and crystal size,
and thus should be quite common in nanocrystalline FCC metals.
Fig. 5a–c and d–f further demonstrate accelerated GB migration
after twinning in Au films with multiple grains. Under shear
loading, the 37° HAGB (Fig. 5a–c) and 19° LAGB (Fig. 5d–f) with
low mobility adjusted their structures/misorientations by the
nucleation of twin embryos from GBs. With the adjustment of GB
structures, these GBs were able to migrate more smoothly, indi-
cating an enhanced deformability. Similarly, in the simulation of
a quasi-three-dimensional polycrystalline Au sample, some
immobile GBs (e.g., the 87° HAGB in Fig. 5g and Supplementary
Fig. 8) preferentially dissociated into a deformation twin and a
new GB (22.5° GB) before migration (Fig. 5h, via the gliding of
dislocation pairs for this GB), confirming the self-adjusted GB
deformability. In these experimental and simulation studies, triple
junctions among neighbouring GBs may exert certain pinning
effects, inducing a non-uniform migration between different
segments of the GBs.

It is noticed that deformation twinning has been frequently
observed in as-deformed nanocrystalline FCC metals, most of which
were proved to correlate closely with GB deformation16,17,36. Some
studies have shown that deformation twins in nanocrystalline metals
are more likely to nucleate at a lower grain growth rate44, and the
increase of Σ3 GBs can promote grain growth45. Similar to the GB
dissociation induced twin and thereby self-stimulated adjustment of
GB mobility, deformation twins nucleated at other sources can
impinge the GBs at the twin front, leading to GB dissociation,

segmentation or partial replacement by incoherent TBs23,24. All of
these processes could markedly modify the GB structure/mis-
orientation, contributing to the dynamic change of GB mobility24,44.
These observations suggest that the GB-associated twins (including
both nucleation and growth) in nanocrystalline metals, under either
mechanical loading or thermal annealing, are more likely to
be dominated by the dynamic GB deformation processes, rather
than through the migration of TB itself. Taken the 〈110〉 tilt GBs as
an example (Figs. 1–4 and 5a–h), we have clearly revealed that the
self-driven adjustment of GB structure can fundamentally change
the GB deformability, which, as the GB migrates, lead to a thick-
ening of the GB-emitted twin among a wide range of GB mis-
orientations and inclinations.

To further confirm this, we have summarized in Fig. 5i the data
of GB-mediated deformation twinning from both as-prepared
samples (e.g., deposited or after high-pressure torsion) and
deformed samples (e.g., subjected to shear/tension/cyclic loading)
reported in literature, where the enhanced GB mobility can be
traced by identifying the GB structures before and after the twin
formation to calculate the corresponding shear coupling factors
using MD simulations (see Supplementary Discussion 4 and
Supplementary Fig. 9). It is surprising that the GB-emitted
twinning and associated self-adjust GB deformation behaviour is
universal in nanocrystalline metals with complex GB networks
over a wide range of misorientations and grain sizes (especially in
the nano-sized regime), where GBs (either LAGBs46 or HAGBs47)
were often coupled with TBs, indicating the dynamic transfor-
mation between HAGBs and LAGBs. In subsequent loading, the
GBs would move or react with other pre-existing defects to fur-
ther adjust the GB structures46. The synergistic motion of GB
sliding and migration can also be activated to dynamically adjust
the GB networks48,49. The GB dislocations generated from such
self-driven GB dynamics may further promote grain growth by
contributing to the self-driven grain rotation46. These dynamic
mechanisms call for a rethink of the role of deformation twinning
in nanocrystalline materials, especially the ones interlinked
with GBs.

In conclusion, the self-driven twinning-assisted dynamic adjust-
ment of GB mobility was systematically investigated using Au
bicrystals with HAGBs as model systems. During GB migration, GB
structures can frequently experience self-adjustment by shear-
dominated twinning, which, in turn, modify the GB structures and
effectively promote GB deformability to accommodate migration by
producing lower coupling factors and larger driving forces. Such self-
adjusted GB migration is a common deformation mode for GBs
among a range of FCC nanocrystalline metals under mechanical
loading. A GB geometry-based twinning tendency model considering
the GB misorientation and inclination was developed to predict the
possibility of the twinning-assisted GB adjustment. Our findings
provide deep insights into the fundamental understanding of self-
adjusted dynamic behaviours of GBs, which predict the stability and
evolution of microstructures of metals and alloys with low stacking
fault energies, as well as the manipulation of interface dynamics to
achieve optimal performance of nanocrystalline materials.

Methods
In situ TEM nanomechanical testing. In situ nanofabrication and tensile testing
of the Au bicrystals with [1�10] tilt GBs were conducted inside an FEI Titan Cs-
corrected TEM, equipped with a TEM electrical holder from Beijing PicoFemto Co.
In the typical nanofabrication process, an Au rod (99.999 wt.% purity, 0.25 mm in
diameter) ordered from Alfa Aesar Inc. was cut by a ProsKit wire cutter to obtain a
fresh fracture surface with numerous nanoscale tips and then loaded on the holder
as the fixed end; an Au probe on the moving end was driven by the piezo-
manipulator to approach the fixed end. At the moment of contact, the Au probe
with a pre-applied voltage potential (−1.5 V) and a nanoscale tip on the fracture
surface of the Au rod was melted together to form an Au bicrystal with a specific
GB structure. Using this method, the orientation and tilt angle of the GB can be
tuned by careful manipulation of the Au probe and the application of proper
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welding potential. In the current study, Au bicrystals containing [1�10] tilt GBs
(with GB misorientations θ= 23° and 87°) were successfully fabricated for tensile
testing. During in situ experiments, the Au probe was moved backward slowly at a
constant rate of 0.005 nm s−1 to realize the tensile/shear loading, giving an esti-
mated strain rate of 10−3 s−1. In all experiments, the TEM was operated at 300 kV
with low current density to minimize the potential beam effect on deformation.
The in situ deformation processes were recorded in real-time by a CCD camera at a
rate of ~0.3 s per frame.

MD simulations. Atomistic simulations were performed to explore the micro-
structural origin of the twinning-assisted dynamic adjustment of GB mobility. The
embedded atom method potential50 used to compute the interatomic forces has
been proven to be reliable in describing the fundamental properties of Au. The Au
samples containing an inclined (Fig. 2)/flat (Fig. 3a, b) tilt GB was created by
constructing two separate crystals with a designed crystallographic misorientation
and joining them along the axial direction. To study the misorientation and
inclination effects, a series of cylindrical bicrystal samples with GB misorientations
ranging from 10° to 70°, and inclinations ranging from 0° to 90°, were created by
rotating the upper grain G2 and the lower grain G1 (see the schematic diagrams in
Fig. 4a, f). Each cylinder has a diameter of 16 nm and a height of 20 nm, containing
a total of ~250,000 atoms. Three layers of atoms at the top and bottom boundaries
of the cylinder were fixed as rigid slabs. The remaining dynamic atoms were
allowed to adjust their positions in a Nose-Hoover thermostat at 300 K. Free
boundary conditions were applied in all three directions of the cylindrical sample.
The systems were relaxed for 20 ps to obtain equilibrated GB structures. The time
step was chosen as 2 fs. A constant shear/tension velocity of v= 1 m s−1 parallel/
inclined to the boundary plane was applied on the rigid slab of the top grain. A
velocity profile with a linear gradient from 0 to 1 m s−1 was assigned to the
dynamic atoms along the axial direction. Note that the shear and tension simu-
lations at a strain rate of 5 × 107 s−1 on the 23° GB (containing ~120,000 atoms)
and with periodic boundary conditions to avoid the influence of free surfaces. In
addition, the quasi-three-dimensional polycrystalline sample in Fig. 5g contained
four hexagonal columnar grains with a grain size of 15 nm and a total of ~190,000
atoms. The grains were misoriented by the texture axis 〈110〉. Shear loading was
applied with a constant strain rate of 5 × 108 s−1. OVITO51 was used to visualize
the simulated samples, and the common neighbour analysis method was employed
to determine the position and structural evolution of the GBs.

We determined the GB energy by calculating the average excess energies of the
atoms at the GB compared with the energies possessed by normal FCC structured
atoms, i.e.,

γGB ¼ Etotal � N � EFCC

A
ð3Þ

where Etotal is the total potential energy of the simulated sample without free
surface, N is the total number of atoms used in the calculation, A is the GB area,
and EFCC =−3.924 eV is the equilibrium energy of each FCC atom in a single
crystalline Au lattice50. The atomic von Mises stress is defined as

σvon�Mises ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2½ðσx � σyÞ2 þ ðσx � σzÞ2 þ ðσz � σyÞ2 þ 6ðτ2xy þ τ2yz þ τ2xzÞ�
q

ð4Þ
where σx, σy, σz, τxy, τyz, τxz are the six independent components of the per-atom
stress tensor.

For NEB calculation of the GB migration barrier, we chose the initial state
where the GB has been fully relaxed before each migration step and a final state
where the GB has migrated for a distance of roughly one atomic layer (0.3 nm).
The final state was minimized to set the system energy close to the
corresponding initial states. And a series of replicas were created by linear
interpolation to connect the two end-states. The activation energies were
calculated by finding the minimum energy paths (MEP) and transition states of
the migration process.

Data availability
The data that support the findings of this study are presented in the paper and/or
the Supplementary Materials.
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