338 research outputs found
Nash Game Model for Optimizing Market Strategies, Configuration of Platform Products in a Vendor Managed Inventory (VMI) Supply Chain for a Product Family
This paper discusses how a manufacturer and its retailers interact with each other to optimize their product marketing strategies, platform product configuration and inventory policies in a VMI (Vendor Managed Inventory) supply chain. The manufacturer procures raw materials from multiple suppliers to produce a family of products sold to multiple retailers. Multiple types of products are substitutable each other to end customers. The manufacturer makes its decision on raw materials’ procurement, platform product configuration, product replenishment policies to retailers with VMI, price discount rate, and advertising investment to maximize its profit. Retailers in turn consider the optimal local advertising and retail price to maximize their profits. This problem is modeled as a dual simultaneous non-cooperative game (as a Nash game) model with two sub-games. One is between the retailers serving in competing retail markets and the other is between the manufacturer and the retailers. This paper combines analytical, iterative and GA (genetic algorithm) methods to develop a game solution algorithm to find the Nash equilibrium. A numerical example is conducted to test the proposed model and algorithm, and gain managerial implications.supply chain management;nash game model;vendor managed inventory
Leader-follower Game in VMI System with Limited Production Capacity Considering Wholesale and Retail Prices
VMI (Vendor Managed Inventory) is a widely used cooperative inventory policy in supply chains in which each enterprise has its autonomy in pricing. This paper discusses a leader-follower Stackelberg game in a VMI supply chain where the manufacturer, as a leader, produces a single product with a limited production capacity and delivers it at a wholesale price to multiple different retailers, as the followers, who then sell the product in dispersed and independent markets at retail prices. An algorithm is then developed to determine the equilibrium of the Stackelberg game. Finally, a numerical study is conducted to understand the influence of the Stackelberg equilibrium and market related parameters on the profits of the manufacturer and its retailers. Through the numerical example, our research demonstrates that: (a) the market related parameters have significant influence on the manufacturer’ and its retailers’ profits; (b) a retailer’s profit may not be necessarily lowered when it is charged with a higher inventory cost by the manufacturer; (c) the equilibrium of the Stackelberg equilibrium benefits the manufacturer.Stackelberg Game;Supply Chain;Vendor Managed Inventory
Nash Game Model for Optimizing Market Strategies, Configuration of Platform Products in a Vendor Managed Inventory (VMI) Supply Chain for a Product Family
This paper discusses how a manufacturer and its retailers interact with each other to optimize their product marketing strategies, platform product configuration and inventory policies in a VMI (Vendor Managed Inventory) supply chain. The manufacturer procures raw materials from multiple suppliers to produce a family of products sold to multiple retailers. Multiple types of products are substitutable each other to end customers. The manufacturer makes its decision on raw materials’ procurement, platform product configuration, product replenishment policies to retailers with VMI, price discount rate, and advertising investment to maximize its profit. Retailers in turn consider the optimal local advertising and retail price to maximize their profits. This problem is modeled as a dual simultaneous non-cooperative game (as a Nash game) model with two sub-games. One is between the retailers serving in competing retail markets and the other is between the manufacturer and the retailers. This paper combines analytical, iterative and GA (genetic algorithm) methods to develop a game solution algorithm to find the Nash equilibrium. A numerical example is conducted to test the proposed model and algorithm, and gain managerial implications
Electrorotation of colloidal suspensions
When a strong electric field is applied to a colloidal suspension, it may
cause an aggregation of the suspended particles in response to the field. In
the case of a rotating field, the electrorotation (ER) spectrum can be modified
further due to the local field effects arising from the many-particle system.
To capture the local field effect, we invoke the Maxwell-Garnett approximation
for the dielectric response. The hydrodynamic interactions between the
suspended particles can also modify the spin friction, which is a key to
determine the angular velocity of ER. By invoking the spectral representation
approach, we derive the analytic expressions for the characteristic frequency
at which the maximum angular velocity of ER occurs. From the numerical
caculation, we find that there exist two sub-dispersions in the ER spectrum.
However, the two characteristic frequencies are so close that the two peaks
actually overlap and become a single broad peak. We report a detailed
investigation of the dependence of the characteristic frequency and the
dispersion strength of ER on various material parameters.Comment: RevTeX, 4 eps figures; clarifying discussion added in accord with
referees' reports; accepted by Physics Letters
Nonlinear alternating current responses of graded materials
When a composite of nonlinear particles suspended in a host medium is
subjected to a sinusoidal electric field, the electrical response in the
composite will generally consist of alternating current (AC) fields at
frequencies of higher-order harmonics. The situation becomes more interesting
when the suspended particles are graded, with a spatial variation in the
dielectric properties. The local electric field inside the graded particles can
be calculated by the differential effective dipole approximation, which agrees
very well with a first-principles approach. In this work, a nonlinear
differential effective dipole approximation and a perturbation expansion method
have been employed to investigate the effect of gradation on the nonlinear AC
responses of these composites. The results showed that the fundamental and
third-harmonic AC responses are sensitive to the dielectric-constant and/or
nonlinear-susceptibility gradation profiles within the particles. Thus, by
measuring the AC responses of the graded composites, it is possible to perform
a real-time monitoring of the fabrication process of the gradation profiles
within the graded particles.Comment: 18 pages, 4 figure
Leader-follower Game in VMI System with Limited Production Capacity Considering Wholesale and Retail Prices
VMI (Vendor Managed Inventory) is a widely used cooperative inventory policy in supply chains in which each enterprise has its autonomy in pricing. This paper discusses a leader-follower Stackelberg game in a VMI supply chain where the manufacturer, as a leader, produces a single product with a limited production capacity and delivers it at a wholesale price to multiple different retailers, as the followers, who then sell the product in dispersed and independent markets at retail prices. An algorithm is then developed to determine the equilibrium of the Stackelberg game. Finally, a numerical study is conducted to understand the influence of the Stackelberg equilibrium and market related parameters on the profits of the manufacturer and its retailers. Through the numerical example, our research demonstrates that: (a) the market related parameters have significant influence on the manufacturer’ and its retailers’ profits; (b) a retailer’s profit ma
Effective conductivity of composites of graded spherical particles
We have employed the first-principles approach to compute the effective
response of composites of graded spherical particles of arbitrary conductivity
profiles. We solve the boundary-value problem for the polarizability of the
graded particles and obtain the dipole moment as well as the multipole moments.
We provide a rigorous proof of an {\em ad hoc} approximate method based on the
differential effective multipole moment approximation (DEMMA) in which the
differential effective dipole approximation (DEDA) is a special case. The
method will be applied to an exactly solvable graded profile. We show that DEDA
and DEMMA are indeed exact for graded spherical particles.Comment: submitted for publication
Effective nonlinear optical properties of composite media of graded spherical particles
We have developed a nonlinear differential effective dipole approximation
(NDEDA), in an attempt to investigate the effective linear and third-order
nonlinear susceptibility of composite media in which graded spherical
inclusions with weak nonlinearity are randomly embedded in a linear host
medium. Alternatively, based on a first-principles approach, we derived exactly
the linear local field inside the graded particles having power-law dielectric
gradation profiles. As a result, we obtain also the effective linear dielectric
constant and third-order nonlinear susceptibility. Excellent agreement between
the two methods is numerically demonstrated. As an application, we apply the
NDEDA to investigate the surface plasma resonant effect on the optical
absorption, optical nonlinearity enhancement, and figure of merit of
metal-dielectric composites. It is found that the presence of gradation in
metal particles yields a broad resonant band in the optical region, and further
enhances the figure of merit.Comment: 20 pages, 5 figure
Теоретичні аспекти процесу реструктуризації в умовах антикризового управління
У статті розкрито сутність поняття "реструктуризація", окреслено чинники, які викликають необхідність реструктуризаційних змін, визначено цілі та види реструктуризації, а також запропоновано ряд перспективних напрямів та відповідних заходів її проведення.Essence of concept "restructuring" is exposed in the article, outlined factors which cause the necessity of
restrukturizaciynikh changes, certainly aims and types of restructuring, and also the row of perspective directions
and proper measures of its leadthrough is offered
Blow up criterion for compressible nematic liquid crystal flows in dimension three
In this paper, we consider the short time strong solution to a simplified
hydrodynamic flow modeling the compressible, nematic liquid crystal materials
in dimension three. We establish a criterion for possible breakdown of such
solutions at finite time in terms of the temporal integral of both the maximum
norm of the deformation tensor of velocity gradient and the square of maximum
norm of gradient of liquid crystal director field.Comment: 22 page
- …