59 research outputs found

    Oxygen dissociation on the C3N monolayer: A first-principles study

    Full text link
    The oxygen dissociation and the oxidized structure on the pristine C3N monolayer in exposure to air are the inevitably critical issues for the C3N engineering and surface functionalization yet have not been revealed in detail. Using the first-principles calculations, we have systematically investigated the possible O2 adsorption sites, various O2 dissociation pathways and the oxidized structures. It is demonstrated that the pristine C3N monolayer shows more O2 physisorption sites and exhibits stronger O2 adsorption than the pristine graphene. Among various dissociation pathways, the most preferable one is a two-step process involving an intermediate state with the chemisorbed O2 and the barrier is lower than that on the pristine graphene, indicating that the pristine C3N monolayer is more susceptible to oxidation than the pristine graphene. Furthermore, we found that the most stable oxidized structure is not produced by the most preferable dissociation pathway but generated from a direct dissociation process. These results can be generalized into a wide range of temperatures and pressures using ab initio atomistic thermodynamics. Our findings deepen the understanding of the chemical stability of 2D crystalline carbon nitrides under ambient conditions, and could provide insights into the tailoring of the surface chemical structures via doping and oxidation.Comment: 23 pages,8 figure

    AF17 Competes With AF9 for Binding to DOT1A to up-Regulate Transcription of Epithelial NA\u3csup\u3e+\u3c/sup\u3e Channel α

    Get PDF
    We previously reported that Dot1a*AF9 complex represses transcription of the epithelial Na+ channel subunit α (α-ENaC) gene in mouse inner medullary collecting duct mIMCD3 cells and mouse kidney. Aldosterone relieves this repression by down-regulating the complex through various mechanisms. Whether these mechanisms are sufficient and conserved in human cells or can be applied to other aldosterone-regulated genes remains largely unknown. Here we demonstrate that human embryonic kidney 293T cells express the three ENaC subunits and all of the ENaC transcriptional regulators examined. These cells respond to aldosterone and display benzamil-sensitive Na+ currents, as measured by whole-cell patch clamping. We also show that AF17 and AF9 competitively bind to the same domain of Dot1a in multiple assays and have antagonistic effects on expression of an α-ENaC promoter-luciferase construct. Overexpression of Dot1a or AF9 decreased mRNA expression of the ENaC subunits and their transcriptional regulators and reduced benzamil-sensitive Na+ currents. AF17 over-expression caused the opposite effects, accompanied by redirection of Dot1a from the nucleus to the cytoplasm and reduction in histone H3 K79 methylation. The nuclear export inhibitor leptomycin B blocked the effect of AF17 overexpression on H3 K79 hypomethylation. RNAi-mediated knockdown of AF17 yielded nuclear enrichment of Dot1a and histone H3 K79 hypermethylation. As with AF9, AF17 displays nuclear and cytoplasmic co-localization with Sgk1. Therefore, AF17 competes with AF9 to bind Dot1a, decreases Dot1a nuclear expression by possibly facilitating its nuclear export, and relieves Dot1a*AF9-mediated repression of α-ENaC and other target genes

    Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding

    Get PDF
    Abstract Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multimodal Emotion Recognition Based on Cascaded Multichannel and Hierarchical Fusion

    No full text
    Humans express their emotions in a variety of ways, which inspires research on multimodal fusion-based emotion recognition that utilizes different modalities to achieve information complementation. However, extracting deep emotional features from different modalities and fusing them remain a challenging task. It is essential to exploit the advantages of different extraction and fusion approaches to capture the emotional information contained within and across modalities. In this paper, we present a novel multimodal emotion recognition framework called multimodal emotion recognition based on cascaded multichannel and hierarchical fusion (CMC-HF), where visual, speech, and text signals are simultaneously utilized as multimodal inputs. First, three cascaded channels based on deep learning technology perform feature extraction for the three modalities separately to enhance deeper information extraction ability within each modality and improve recognition performance. Second, an improved hierarchical fusion module is introduced to promote intermodality interactions of three modalities and further improve recognition and classification accuracy. Finally, to validate the effectiveness of the designed CMC-HF model, some experiments are conducted to evaluate two benchmark datasets, IEMOCAP and CMU-MOSI. The results show that we achieved an almost 2%∼3.2% increase in accuracy of the four classes for the IEMOCAP dataset as well as an improvement of 0.9%∼2.5% in the average class accuracy for the CMU-MOSI dataset when compared to the existing state-of-the-art methods. The ablation experimental results indicate that the cascaded feature extraction method and the hierarchical fusion method make a significant contribution to multimodal emotion recognition, suggesting that the three modalities contain deeper information interactions of both intermodality and intramodality. Hence, the proposed model has better overall performance and achieves higher recognition efficiency and better robustness

    Triangle Distance IoU Loss, Attention-Weighted Feature Pyramid Network, and Rotated-SARShip Dataset for Arbitrary-Oriented SAR Ship Detection

    No full text
    In synthetic aperture radar (SAR) images, ship targets are characterized by varying scales, large aspect ratios, dense arrangements, and arbitrary orientations. Current horizontal and rotation detectors fail to accurately recognize and locate ships due to the limitations of loss function, network structure, and training data. To overcome the challenge, we propose a unified framework combining triangle distance IoU loss (TDIoU loss), an attention-weighted feature pyramid network (AW-FPN), and a Rotated-SARShip dataset (RSSD) for arbitrary-oriented SAR ship detection. First, we propose a TDIoU loss as an effective solution to the loss-metric inconsistency and boundary discontinuity in rotated bounding box regression. Unlike recently released approximate rotational IoU losses, we derive a differentiable rotational IoU algorithm to enable back-propagation of the IoU loss layer, and we design a novel penalty term based on triangle distance to generate a more precise bounding box while accelerating convergence. Secondly, considering the shortage of feature fusion networks in connection pathways and fusion methods, AW-FPN combines multiple skip-scale connections and attention-weighted feature fusion (AWF) mechanism, enabling high-quality semantic interactions and soft feature selections between features of different resolutions and scales. Finally, to address the limitations of existing SAR ship datasets, such as insufficient samples, small image sizes, and improper annotations, we construct a challenging RSSD to facilitate research on rotated ship detection in complex SAR scenes. As a plug-and-play scheme, our TDIoU loss and AW-FPN can be easily embedded into existing rotation detectors with stable performance improvements. Experiments show that our approach achieves 89.18% and 95.16% AP on two SAR image datasets, RSSD and SSDD, respectively, and 90.71% AP on the aerial image dataset, HRSC2016, significantly outperforming the state-of-the-art methods
    • …
    corecore