63 research outputs found
Significance of PRO2000/ANCCA expression, a novel proliferation-associated protein in hepatocellular carcinoma
BACKGROUND: PRO2000/ANCCA may be an important candidate gene which located within a region of chromosome 8q in hepatocellular carcinoma (HCC). However, its significance remains unclear. The aim of this study was to explore the clinical significance of PRO2000/ANCCA expression in HCC. METHODS: The correlations of PRO2000/ANCCA expression with clinicopathological factors and prognosis of HCC patients were analyzed. Expression of PRO2000/ANCCA, ki-67, cyclinD1, p53 and p21 was detected in HCCs from 107 patients along with corresponding non-tumor tissues by immunohistochemistry. RESULTS: PRO2000/ANCCA expression was present in 66 of 107 (64.94%) HCC specimens in which 36 of 76 (47.37%) in well differentiated tumors and 30 of 31 (96.77%) in poorly differentiated tumors respectively, while 8 (7.48%) in adjacent non-tumor tissues with scattered positive cells. PRO2000/ANCCA expression was associated with clinicopathological features such as histological differentiation, number of tumor nodules, TNM stage, tumor microsatellite, portal vein tumor thrombus and recurrence, but not with gender, age, tumor size, cirrhosis, HBV infection and serum fetoprotein (AFP) level. There was a close relationship between PRO2000/ANCCA and ki-67 and cyclinD1 in HCC. PRO2000/ANCCA immunopositivity was independent of p53 and p21(WAF1/Cip1). CONCLUSIONS: Increased expression of PRO2000/ANCCA is associated with adverse outcome in patients with HCC and is a predictor of poor prognosis for HCC. PRO2000/ANCCA may be involved in the development of HCC and might promote cell proliferation through a p53/ P21(WAF1/Cip1)-independent pathway
Tunable Carbon-Dot-Based Dual-Emission Fluorescent Nanohybrids for Ratiometric Optical Thermometry in Living Cells
The use of carbon-dot-based dual-emission fluorescent nanohybrids (DEFNs) as versatile nanothermometry devices for spatially resolved temperature measurements in living cells is demonstrated. The carbon dots (CDs) are prepared in the organic phase and display tunable photoluminescence (PL) across a wide visible range by adjusting the excitation wavelengths and extend of N-doping. DEFNs are formed in a straightforward fashion from CDs (emitting blue PL) and gold nanoclusters (AuNCs, emitting red PL). The DEFNs display ideal single-excitation, dual-emission with two well-resolved, intensity-comparable fluorescence peaks, and function in optical thermometry with high reliability and accuracy by exploiting the temperature sensitivity of their fluorescence intensity ratio (blue/red). Furthermore, the DEFNs have been introduced into cells, exhibiting good biocompatibility, and have facilitated physiological temperature measurements in the range of 25-45 °C; the DEFNs can therefore function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell.This work was supported by the National Natural Science
Foundation of China (Nos. 50925207, 51432006, and
51503085), the Ministry of Science and Technology of China
for the International Science Linkages Program (No.
2011DFG52970), the Natural Science Foundation of Jiangsu
Province, China (No. BK20140157), the Changjiang Innovation Research Team (IRT14R23), the Programme of Introducing Talents of Discipline to Universities (111 Project
B13025). M.G.H. and C.Z. thank the Australian Research
Council (ARC) for support
Clomazone impact on fungal network complexity and stability
IntroductionSoil fungal network composition and stability are important for soil functions, but there is less understanding of the impact of clomazone on network complexity and stability.MethodsIn this work, two agricultural soils were used to investigate the impact of clomazone on fungal network complexity, composition, and stability. The two soils were treated with clomazone solution (0, 0.8, 8, and 80  mg kg−1) and kept in an incubator.Results and DiscussionUnder the influence of clomazone, the fungal network nodes were decreased by 12–42; however, the average degree was increased by 0.169–1.468 and fungal network density was increased by 0.003–0.054. The keystone nodes were significantly changed after clomazone treatment. Network composition was also impacted. Specifically, compared with control and clomazone treatments in both soils, the shared edges were fewer than 54 in all comparisons, and network dissimilarity was 0.97–0.98. These results suggested that fungal network composition was significantly impacted. The network robustness was increased by 0.0018–0.0209, and vulnerability was decreased by 0.00018–0.00059 in both soils, which indicated that fungal network stability was increased by clomazone. In addition, the functions of network communities were also changed in both soils. These results indicated that clomazone could significantly impact soil fungal networks
Simplified HIV Testing and Treatment in China: Analysis of Mortality Rates Before and After a Structural Intervention.
BackgroundMultistage stepwise HIV testing and treatment initiation procedures can result in lost opportunities to provide timely antiretroviral therapy (ART). Incomplete patient engagement along the continuum of HIV care translates into high levels of preventable mortality. We aimed to evaluate the ability of a simplified test and treat structural intervention to reduce mortality.Methods and findingsIn the "pre-intervention 2010" (from January 2010 to December 2010) and "pre-intervention 2011" (from January 2011 to December 2011) phases, patients who screened HIV-positive at health care facilities in Zhongshan and Pubei counties in Guangxi, China, followed the standard-of-care process. In the "post-intervention 2012" (from July 2012 to June 2013) and "post-intervention 2013" (from July 2013 to June 2014) phases, patients who screened HIV-positive at the same facilities were offered a simplified test and treat intervention, i.e., concurrent HIV confirmatory and CD4 testing and immediate initiation of ART, irrespective of CD4 count. Participants were followed for 6-18 mo until the end of their study phase period. Mortality rates in the pre-intervention and post-intervention phases were compared for all HIV cases and for treatment-eligible HIV cases. A total of 1,034 HIV-positive participants (281 and 339 in the two pre-intervention phases respectively, and 215 and 199 in the two post-intervention phases respectively) were enrolled. Following the structural intervention, receipt of baseline CD4 testing within 30 d of HIV confirmation increased from 67%/61% (pre-intervention 2010/pre-intervention 2011) to 98%/97% (post-intervention 2012/post-intervention 2013) (all p < 0.001 [i.e., for all comparisons between a pre- and post-intervention phase]), and the time from HIV confirmation to ART initiation decreased from 53 d (interquartile range [IQR] 27-141)/43 d (IQR 15-113) to 5 d (IQR 2-12)/5 d (IQR 2-13) (all p < 0.001). Initiation of ART increased from 27%/49% to 91%/89% among all cases (all p < 0.001) and from 39%/62% to 94%/90% among individuals with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). Mortality decreased from 27%/27% to 10%/10% for all cases (all p < 0.001) and from 40%/35% to 13%/13% for cases with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). The simplified test and treat intervention was significantly associated with decreased mortality rates compared to pre-intervention 2011 (adjusted hazard ratio [aHR] 0.385 [95% CI 0.239-0.620] and 0.380 [95% CI 0.233-0.618] for the two post-intervention phases, respectively, for all newly diagnosed HIV cases [both p < 0.001], and aHR 0.369 [95% CI 0.226-0.603] and 0.361 [95% CI 0.221-0.590] for newly diagnosed treatment-eligible HIV cases [both p < 0.001]). The unit cost of an additional patient receiving ART attributable to the intervention was US234.52.ConclusionsOur results demonstrate that the simplified HIV test and treat intervention promoted successful engagement in care and was associated with a 62% reduction in mortality. Our findings support the implementation of integrated HIV testing and immediate access to ART irrespective of CD4 count, in order to optimize the impact of ART
Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity
We report on the development of a blue light-emitting-diode-based incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for the measurement of the aerosol extinction coefficient at \u1d706=461  nm. With an effective absorption path length of 2.8 km, an optimum detection limit of 0.05  Mm−1 (5×10−10  cm−1) was achieved with an averaging time of 84 s. The baseline drift of the developed spectrometer was about ±0.3  Mm−1 over 2.5 h (1\u1d70e standard deviation). The performance of the system was evaluated with laboratory-generated monodispersed polystyrene latex (PSL) spheres. The retrieved complex refractive index of PSL agreed well with previously reported values. The relative humidity (RH) dependence of the aerosol extinction coefficient was measured using IBBCEAS. The measured extinction enhancement factor values for 200 nm dry ammonium sulphate particles at different RH were in good agreement with the modeled values. Field performance of the aerosol extinction spectrometer was demonstrated at the Hefei Radiation Observatory site
Gazelle: A Low Latency Framework for Secure Neural Network Inference
The growing popularity of cloud-based machine learning raises a natural
question about the privacy guarantees that can be provided in such a setting.
Our work tackles this problem in the context where a client wishes to classify
private images using a convolutional neural network (CNN) trained by a server.
Our goal is to build efficient protocols whereby the client can acquire the
classification result without revealing their input to the server, while
guaranteeing the privacy of the server's neural network.
To this end, we design Gazelle, a scalable and low-latency system for secure
neural network inference, using an intricate combination of homomorphic
encryption and traditional two-party computation techniques (such as garbled
circuits). Gazelle makes three contributions. First, we design the Gazelle
homomorphic encryption library which provides fast algorithms for basic
homomorphic operations such as SIMD (single instruction multiple data)
addition, SIMD multiplication and ciphertext permutation. Second, we implement
the Gazelle homomorphic linear algebra kernels which map neural network layers
to optimized homomorphic matrix-vector multiplication and convolution routines.
Third, we design optimized encryption switching protocols which seamlessly
convert between homomorphic and garbled circuit encodings to enable
implementation of complete neural network inference.
We evaluate our protocols on benchmark neural networks trained on the MNIST
and CIFAR-10 datasets and show that Gazelle outperforms the best existing
systems such as MiniONN (ACM CCS 2017) by 20 times and Chameleon (Crypto Eprint
2017/1164) by 30 times in online runtime. Similarly when compared with fully
homomorphic approaches like CryptoNets (ICML 2016) we demonstrate three orders
of magnitude faster online run-time
Enhanced heating rate of black carbon above planetary boundary layer over megacities in summertime
The fast development of a secondary aerosol layer was observed over megacities in eastern Asia during summertime. Within three hours, from midday to early afternoon, the contribution of secondary aerosols above the planetary boundary layer (PBL) increased by a factor of 3-5, and the coatings on the black carbon (BC) also increased and enhanced its absorption efficiency by 50%. This tended to result from the intensive actinic flux received above the PBL which promoted the photochemical reactions. The absorption of BC could be further amplified by the strong reflection of solar radiation over the cloud top across the PBL. This enhanced heating effect of BC introduced by combined processes (intensive solar radiation, secondary formation and cloud reflection) may considerably increase the temperature inversion above the PBL. This mechanism should be considered when evaluating the radiative impact of BC, especially for the polluted regions receiving strong solar radiation
Growth, biochemical composition and photosynthetic performance of Scenedesmus acuminatus under different initial sulfur supplies
The effects of sulfur availability on growth, biochemical composition and photosynthetic capacity of the freshwater green microalga Scenedesmus acuminatus were investigated. Modified BG-11 media with Na2SO4 concentrations of 0.076 mM (0.25S), 0.153 mM (0.5S), 0.306 mM (control group), 0.459 mM (1.5S) and 0.612 mM (2.0S) were used to culture S. acuminatus. Sulfur repletion promoted the growth and reproduction of this species, while low sulfur supply markedly decreased the reproduction, nitrogen uptake, soluble protein and chlorophyll content, and photosynthetic activity. Elemental analysis showed that nitrogen, sulfur and carbon content per cell was significantly higher in the sulfur-limitation groups than in the control group on day 18. The metabolic response to sulfur limitation was divided into two stages: first, carbon equivalents were diverted from soluble protein to carbohydrates; then, carbohydrates were converted into neutral lipids. The total lipid content in the 0.25S and 0.5S groups reached 55.2% dry weight (DW) and 52.5% DW, respectively; neutral lipids accounted for 92.1% and 90.3% of the total lipids. Low-sulfur (0.5S) and sulfur-replete conditions both enhanced the lipid productivity. The initial sulfur level caused significant changes in the fatty acid composition of S. acuminatus. The sulfur-limited groups accumulated C16:0 and C18:1, while the sulfur-replete groups were mainly enriched in C16:0. Levels of free leucine, isoleucine, valine, lysine, glycine, alanine, aspartic acid and proline were closely related to the initial sulfur concentration. Changes in free phenylalanine, tryptophan, threonine and serine were due more to the duration of culturing. The results of this study will be useful as a reference for regulation of the initial sulfur supply to enhance lipid productivity of S. acuminatus for use in applications such as biodiesel production
- …