646 research outputs found

    Machine Learning-based Indoor Positioning Systems Using Multi-Channel Information

    Get PDF
    The received signal strength indicator (RSSI) is a metric of the power measured by a sensor in a receiver. Many indoor positioning technologies use RSSI to locate objects in indoor environments. Their positioning accuracy is significantly affected by reflection and absorption from walls, and by non-stationary objects such as doors and people. Therefore, it is necessary to increase transceivers in the environment to reduce positioning errors. This paper proposes an indoor positioning technology that uses the machine learning algorithm of channel state information (CSI) combined with fingerprinting. The experimental results showed that the proposed method outperformed traditional RSSI-based localization systems in terms of average positioning accuracy up to 6.13% and 54.79% for random forest (RF) and back propagation neural networks (BPNN), respectively

    Machine Learning-based Indoor Positioning Systems Using Multi-Channel Information

    Get PDF
    The received signal strength indicator (RSSI) is a metric of the power measured by a sensor in a receiver. Many indoor positioning technologies use RSSI to locate objects in indoor environments. Their positioning accuracy is significantly affected by reflection and absorption from walls, and by non-stationary objects such as doors and people. Therefore, it is necessary to increase transceivers in the environment to reduce positioning errors. This paper proposes an indoor positioning technology that uses the machine learning algorithm of channel state information (CSI) combined with fingerprinting. The experimental results showed that the proposed method outperformed traditional RSSI-based localization systems in terms of average positioning accuracy up to 6.13% and 54.79% for random forest (RF) and back propagation neural networks (BPNN), respectively

    Effects of epidural compression on stellate neurons and thalamocortical afferent fibers in the rat primary somatosensory cortex

    Get PDF
    A number of neurological disorders such as epidural hematoma can cause compression of cerebral cortex. We here tested the hypothesis that sustained compression of primary somatosensory cortex may affect stellate neurons and thalamocortical afferent (TCA) fibers. A rat model with barrel cortex subjected to bead epidural compression was used. Golgi‑Cox staining analyses showed the shrinkage of dendritic arbors and the stripping of dendritic spines of stellate neurons for at least 3 months post‑lesion. Anterograde tracing analyses exhibited a progressive decline of TCA fiber density in barrel field for 6 months post‑lesion. Due to the abrupt decrease of TCA fiber density at 3 days after compression, we further used electron microscopy to investigate the ultrastructure of TCA fibers at this time. Some TCA fiber terminal profiles with dissolved or darkened mitochondria and fewer synaptic vesicles were distorted and broken. Furthermore, the disruption of mitochondria and myelin sheath was observed in some myelinated TCA fibers. In addition, expressions of oxidative markers 3‑nitrotyrosine and 4‑hydroxynonenal were elevated in barrel field post‑lesion. Treatment of antioxidant ascorbic acid or apocynin was able to reverse the increase of oxidative stress and the decline of TCA fiber density, rather than the shrinkage of dendrites and the stripping of dendritic spines of stellate neurons post‑lesion. Together, these results indicate that sustained epidural compression of primary somatosensory cortex affects the TCA fibers and the dendrites of stellate neurons for a prolonged period. In addition, oxidative stress is responsible for the reduction of TCA fiber density in barrels rather than the shrinkage of dendrites and the stripping of dendritic spines of stellate neurons

    Hospitalized Pediatric Parainfluenza Virus Infections in a Medical Center

    Get PDF
    Background/PurposeParainfluenza viruses (PIVs) are common pathogens in respiratory tract infections. The aims of this study were to determine the clinical presentation of PIV infections in hospitalized children and to identify particular clinical indications that may effectively distinguish between different PIV serotypes.MethodsA retrospective review of data from children hospitalized with PIV infections at the Mackay Memory Hospital in Taipei between January 2005 and December 2007 was undertaken. Symptoms, signs, laboratory findings and seasonal variations between different types of PIV (serotypes 1, 2 and 3) were compared.ResultsA total of 206 patients [119 (57.8%) boys and 87 (42.2%) girls] were enrolled in the study. Seventy-four (35.9%) patients were infected with PIV serotype 1, 25 (12.1%) with serotype 2 and 107 (51.9%) with serotype 3. The most common clinical presentations were fever (81.1%), cough (66.0%), rhinorrhea (44.2%) and hoarseness (22.3%); 4.9% of the infected children also had skin rashes. No significant differences were found in average white blood cell counts and C-reactive protein levels between the three serotypes. PIV serotype 1 infections were discernible throughout the year; serotype 2 tended to cluster in the late summer and autumn of 2005 and 2007; and serotype 3 was more common in the spring and early summer.ConclusionThe clinical presentation of PIV infection in hospitalized children ranges from upper respiratory tract infection to croup, bronchiolitis and viral bronchopneumonia, with the different types of PIV infections giving rise to similar symptoms. The seasonal distribution of the different serotypes is, nevertheless, quite distinct

    An easy approach to derive EOQ and EPQ models with shortage and defective items

    Get PDF
    Huang [Journal of Statistics and Management Systems, Vol. 6, No. 2, pp. 171-180, 2003.] studied the EOQ (Economic Order Quantity) and EPQ (Economic Production Quantity) models with backlogging and defective items using the algebraic approach. He assumed that a 100% inspection policy and the known proportion of defective items was removed after the screening process prior to storage or use. In this paper, we will offer another simple approach to find both the optimal lot size and backorder level under the minimized total relevant cost per unit time

    An easy approach to derive EOQ and EPQ models with shortage and defective items

    Get PDF
    Huang [Journal of Statistics and Management Systems, Vol. 6, No. 2, pp. 171-180, 2003.] studied the EOQ (Economic Order Quantity) and EPQ (Economic Production Quantity) models with backlogging and defective items using the algebraic approach. He assumed that a 100% inspection policy and the known proportion of defective items was removed after the screening process prior to storage or use. In this paper, we will offer another simple approach to find both the optimal lot size and backorder level under the minimized total relevant cost per unit time

    Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

    Get PDF
    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation

    Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT

    Get PDF
    Green algae are able to convert solar energy to H2 via the photosynthetic electron transport pathway under certain conditions. Algal hydrogenase (HydA, encoded by HYDA) is in charge of catalyzing the reaction: 2H+ + 2e− ↔ H2 but usually inhibited by O2, a byproduct of photosynthesis. The aim of this study was to knockdown PsbO (encoded by psbO), a subunit concerned with O2 evolution, so that it would lead to HydA induction. The alga, Chlorella sp. DT, was then transformed with short interference RNA antisense-psbO (siRNA-psbO) fragments. The algal mutants were selected by checking for the existence of siRNA-psbO fragments in their genomes and the low amount of PsbO proteins. The HYDA transcription and the HydA expression were observed in the PsbO-knockdown mutants. Under semi-aerobic condition, PsbO-knockdown mutants could photobiologically produce H2 which increased by as much as 10-fold in comparison to the wild type
    • …
    corecore