1,298 research outputs found

    Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field

    Full text link
    We investigate dynamics of exact N-soliton trains in spin chain driven by a time-dependent magnetic field by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin precession around the magnetic field and periodic shape-variation induced by the time varying field as well. In terms of the general soliton solutions N-soliton interaction and particularly various two-soliton collisions are analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears generally due to the time varying field. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and field parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure

    Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors

    Get PDF
    ArticleIn order to improve the anaerobic fermentation of oil refinery wastewater (ORWW) via an appropriate nutrients pool for microbial and buffer capacity growth, a study was carried out on related anaerobic co-digestion (AcoD) with a rich organic carbon source, namely chicken manure (CM). The kinetic parameters were investigated (including cumulative biogas production, bio-methane content, retention time, and soluble chemical oxygen demand stabilisation rate) of batch AcoD experiments related to six ORWW:CM-ratio treatments (5:0, 4:1, 3:2, 2:3, 1:4, and 0:5) under mesophilic conditions. The highest soluble chemical oxygen demand removal rate was obtained for the 4:1-ratio treatment. However, the highest biogas production and bio-methane contents were achieved for the 1:4-ratio treatment. When taking into consideration the highest oil refinery wastewater portion in the AcoD mixtures and the statistical test results (LSD0.05) for the kinetic parameters, it can be seen that the 4:1-ratio treatment provided the maximum biogas production levels

    Growth of High Quality ZnMgO Films on Diamond Substrates

    Get PDF
    AbstractZnMgO films were prepared at room temperature on freestanding diamond (FSD) substrates by co-sputtering. The Mg content was controlled by varying RF sputtering power of MgO and the effects of Mg contents on the properties of ZnMgO films were investigated. The results showed that the (0002) peak of ZnMgO shifted from 34.5° to 35.6° with the increasing sputtering power of MgO target. The UV-visible and PL spetra of ZnMgO films revealed that the bandgap of ZnMgO was approximately linear related to the sputtering power of MgO target

    A low-cost metastable beta Ti alloy with high elastic admissible strain and enhanced ductility for orthopaedic application

    Get PDF
    In this work, a low-cost biomedical titanium alloy Ti–5Mo–Fe–3Sn (atomic percent) was successfully developed. The microstructure, tensile properties and deformation behaviour were investigated at ambient temperature. It was found that the combined addition of Sn and Fe suppressed the formation of athermal omega phase and introduced solid solution strengthening. An excellent combination of low elastic modulus (52 GPa) and high yield strength (740 MPa) was achieved, leading to a high elastic admissible strain (1.42%). Transmission electron microscopy results revealed that with an increase in tensile strain, the {332} twin system was initiated first, and then secondary {332} twinning and ternary {112} twinning were also observed. The evolution of multi-twin system during deformation was responsible for the enhanced strain hardening rate and plasticity (elongation ∼30%)

    Effect of grain size and crystallographic structure on the corrosion and tribocorrosion behaviour of a CoCrMo biomedical grade alloy in simulated body fluid

    Get PDF
    CoCrMo alloys are used in hip and knee replacements due to their excellent long-term survival rates. However, high failure rates have recently been observed associated with adverse tissue reactions. CoCrMo alloy surfaces undergo microstructural changes during wear, including the formation of ε-martensite and, occasionally, a nanocrystalline surface layer. It is not clear whether these changes are beneficial or detrimental to the performance of the component. Thus, high-pressure torsion (HPT) was employed to produce different grain sizes and crystallographic structures in a CoCrMo alloy and the corrosion and tribocorrosion behaviour were critically investigated as a function of grain size. The results reveal a degradation of the corrosion resistance for the HTP processed samples. The contributions of mechanical and corrosion material loss in tribocorrosion is also examined

    Measuring non-extensitivity parameters in a turbulent Couette-Taylor flow

    Full text link
    We investigate probability density functions of velocity differences at different distances r measured in a Couette-Taylor flow for a range of Reynolds numbers Re. There is good agreement with the predictions of a theoretical model based on non-extensive statistical mechanics (where the entropies are non-additive for independent subsystems). We extract the scale-dependent non-extensitivity parameter q(r, Re) from the laboratory data.Comment: 8 pages, 5 figure

    Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity

    Get PDF
    Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity

    Modified Hagedorn formula including temperature fluctuation - Estimation of temperatures at RHIC experiments -

    Get PDF
    We have systematically estimated the possible temperatures obtained from an analysis of recent data on ptp_t distributions observed at RHIC experiments. Using the fact that observed ptp_t distributions cannot be described by the original Hagedorn formula in the whole range of transverse momenta (in particular above 6 GeV/c), we propose a modified Hagedorn formula including temperature fluctuation. We show that by using it we can fit ptp_t distributions in the whole range and can estimate consistently the relevant temperatures, including their fluctuations.Comment: Some misprints corrected, references updated. To be published in Eur. Phys. J. C (2006

    QCD sum rules analysis of the rare B_c \rar X\nu\bar{\nu} decays

    Full text link
    Taking into account the gluon correction contributions to the correlation function, the form factors relevant to the rare B_c \rar X \nu\bar{\nu} decays are calculated in the framework of the three point QCD sum rules, where XX stands for axial vector particle, AV(Ds1)AV(D_{s1}), and vector particles, V(D∗,Ds∗)V(D^*,D^*_s). The total decay width as well as the branching ratio of these decays are evaluated using the q2q^2 dependent expressions of the form factors. A comparison of our results with the predictions of the relativistic constituent quark model is presented.Comment: 21 Pages, 2 Figures and 5 Table

    Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion

    Get PDF
    Transient receptor potential vanilloid 4 (TRPV4) cation channels are functional in all renal vascular segments and mediate endothelium-dependent vasorelaxation. Moreover, they are expressed in distinct parts of the tubular system and activated by cell swelling. Ischaemia/reperfusion injury (IRI) is characterized by tubular injury and endothelial dysfunction. Therefore, we hypothesised a putative organ protective role of TRPV4 in acute renal IRI. IRI was induced in TRPV4 deficient (Trpv4 KO) and wild-type (WT) control mice by clipping the left renal pedicle after right-sided nephrectomy. Serum creatinine level was higher in Trpv4 KO mice 6 and 24 hours after ischaemia compared to WT mice. Detailed histological analysis revealed that IRI caused aggravated renal tubular damage in Trpv4 KO mice, especially in the renal cortex. Immunohistological and functional assessment confirmed TRPV4 expression in proximal tubular cells. Furthermore, the tubular damage could be attributed to enhanced necrosis rather than apoptosis. Surprisingly, the percentage of infiltrating granulocytes and macrophages were comparable in IRI-damaged kidneys of Trpv4 KO and WT mice. The present results suggest a renoprotective role of TRPV4 during acute renal IRI. Further studies using cell-specific TRPV4 deficient mice are needed to clarify cellular mechanisms of TRPV4 in IRI
    • …
    corecore