3,841 research outputs found

    Time-optimal variational control of bright matter-wave soliton

    Get PDF
    Motivated by recent experiments, we present the time-optimal variational control of bright matter-wave soliton trapped in a quasi-one-dimensional harmonic trap by manipulating the atomic attraction through Feshbach resonances. More specially, we first apply a time-dependent variational method to derive the motion equation for capturing the soliton's shape, and secondly combine inverse engineering with optimal control theory to design the atomic interaction for implementing time-optimal decompression. Since the time-optimal solution is of bang-bang type, the smooth regularization is further adopted to smooth the on-off controller out, thus avoiding the heating and atom loss, induced from magnetic field ramp across a Feshbach resonance in practice

    3D Trajectory Design for UAV-Assisted Oblique Image Acquisition

    Full text link
    In this correspondence, we consider a new unmanned aerial vehicle (UAV)-assisted oblique image acquisition system where a UAV is dispatched to take images of multiple ground targets (GTs). To study the three-dimensional (3D) UAV trajectory design for image acquisition, we first propose a novel UAV-assisted oblique photography model, which characterizes the image resolution with respect to the UAV's 3D image-taking location. Then, we formulate a 3D UAV trajectory optimization problem to minimize the UAV's traveling distance subject to the image resolution constraints. The formulated problem is shown to be equivalent to a modified 3D traveling salesman problem with neighbourhoods, which is NP-hard in general. To tackle this difficult problem, we propose an iterative algorithm to obtain a high-quality suboptimal solution efficiently, by alternately optimizing the UAV's 3D image-taking waypoints and its visiting order for the GTs. Numerical results show that the proposed algorithm significantly reduces the UAV's traveling distance as compared to various benchmark schemes, while meeting the image resolution requirement
    • 

    corecore