
Time-optimal variational control of a bright
matter-wave soliton

Author Tang-You Huang, Jia Zhang, Jing Li, Xi Chen
journal or
publication title

Physical Review A

volume 102
number 5
page range 053313
year 2020-11-13
Publisher American Physical Society
Rights (C) 2020 American Physical Society.
Author's flag publisher
URL http://id.nii.ac.jp/1394/00001721/

doi: info:doi/10.1103/PhysRevA.102.053313



PHYSICAL REVIEW A 102, 053313 (2020)

Time-optimal variational control of a bright matter-wave soliton

Tang-You Huang ,1,2 Jia Zhang ,1 Jing Li,3 and Xi Chen 1,2,*

1International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist),
and Department of Physics, Shanghai University, 200444 Shanghai, China

2Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
3Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan

(Received 18 September 2020; accepted 29 October 2020; published 13 November 2020)

Motivated by recent experiments, we present the time-optimal variational control of a bright matter-wave
soliton trapped in the harmonic trap by manipulating the atomic interaction through Feshbach resonances. More
specifically, we first apply the variational technique to derive the motion equation for capturing the soliton’s
shape and, second, combine an inverse-engineering method with optimal control theory to design the scatter
length for implementing time-optimal decompression. Since the minimum-time solution is of the “bang-bang”
type, the smooth regularization is further adopted to smooth the on-off controller out, thus avoiding the heating
and atom loss induced from the magnetic field ramp across a Feshbach resonance, in practice.
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I. INTRODUCTION

The experimental discovery of Bose-Einstein condensates
(BECs) in 1995 has instigated a broad interest in ultracold
atoms and molecules [1–3], and paved the way for extensive
studies of the nonlinear properties and dynamics of Bose
gases, with the applications in atom optics and other areas of
condensed-matter physics and fluid dynamics [4]. For atomic
matter waves, the matter-wave soliton can be experimentally
created in BECs with repulsive and attractive interaction be-
tween atoms, which indicates a dark soliton [5,6] and bright
soliton [7,8] respectively. Subsequently, more experimental
findings show the formation of bright solitary matter waves
and probe for potential barriers [9–12]. Very recently, the
bright solitons were created by a double-quench protocol,
that is, by a quench of the interactions and the longitudi-
nal confinement [13]. In this regard, bright solitons, i.e., a
nonspreading localized wave packet, are the most striking
paradigm of a nonlinear system since a bright soliton and
bright solitary waves are excellent candidates for applications
in highly sensitive atom interferometry [14–16] or the genera-
tion of the Bell state in quantum information processing [17].

In the mean-field approximation, an atomic BEC obeys
the Gross-Pitaevskii (GP) equation, which is equivalent to
the three-dimensional (3D) nonlinear Schrödinger equation,
while in a quasi-one-dimensional (1D) regime, these systems
with BECs confined in a cigar-shaped potential trap are re-
duced to the 1D GP equation [18]. In particular, with the
experimental feasibility of reaching the quasi-1D limit of true
solitons, the modulation of the scattering length by varying
the magnetic field through a board Feshbach resonance gives
rise to prominent nonlinear features, such as collapse [19,20],
collision [21], and instability [22]. In most aforementioned
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experiments [7–13,20–22], the quenching of atom interactions
from repulsive to attractive makes the cloud unstable, result-
ing in the excitation of breathing modes [13]. Meanwhile, the
experimentally observed atom loss rate, relevant to inelastic
three-body collisions, becomes orders of magnitude larger
than one would expect for a static soliton [23]. Therefore,
shortcuts to adiabaticity (STA) [24,25] are requested to sur-
pass the common nonadiabatic process, for instance, thus
avoiding the significant heating and losses induced from the
sudden switching of the atomic interactions [26].

By now, the variational technique, originally proposed in
a nonlinear problem [27,28], has been developed for STA in
particular systems [29–32] that cannot be treated by means
of other existing approaches, i.e., invariant-based engineer-
ing [33,34], counterdiabatic driving [35–37], and fast-forward
scaling [38,39]. More specifically, since the time-dependent
variational principle can find a set of Newton-like ordinary
differential equations for the parameters (i.e., the width of
cloud, center, and interatomic interaction), the variational con-
trol provides a promising alternative aimed at accelerating
the adiabatic compression or decompression of BECs and
bright solitons [29,32], beyond the harmonic approximation
of the potential [31] and Thomas-Fermi limit [33,40,41]. In
this scenario, the Lewis-Riesenfeld dynamical invariant and
general scaling transformations [33,34] are not required in the
context of inverse engineering.

In this article, we shall address the time-optimal variational
control by focusing on a bright matter-wave soliton trapped
in the harmonic trap with tunable interactions [42–44]. Here
we first hybridize the variational approximate and inverse-
engineering methods to design the atomic interaction, and
further apply the Pontryagin’s maximum principle in op-
timal control theory [45] for achieving the time-minimal
decompression, fulfilling the appropriate boundary condi-
tions. Under the constraint, the time-optimal solution delivers
“bang-bang” control, which requires the dramatic changes
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of scattering strength around a Feshbach resonance. It turns
out that such sudden change leads to the heating and atom
loss, excites the breathing modes, and thus makes the practi-
cal experiment unstable or unfeasible [22,23]. Therefore, this
motivates us to try the smooth regularization of bang-bang
control at the expense of operation time [46,47]. Our results
are of interest to deliver an optimally fast but stable creation
or transformation of a soliton [13,22,23]. Different from the
previous results [26,29,30], the minimum-time control sets
a fundamental bound as the quantum speed limit and also
has implications in thermodynamic limits of atomic cooling
[30–32].

II. VARIATIONAL METHOD OF SOLITON DYNAMICS

We consider a BEC of N atoms of mass m and attractive
s-wave scattering length as < 0, trapped in a prolate, cylindri-
cally symmetric harmonic trap [18,42–44]. To be consistent,
we write the dynamics of a BEC described by the following
time-dependent 3D GP equation:

[
ih̄

∂

∂t
+ h̄2

2m
∇2 − U (r) − g3D(t )|�|2

]
� = 0, (1)

where �(r, t ) is the macroscopic wave function (order pa-
rameter) of BEC, g3D(t ) = 4Nπ h̄2as(t )/m is the interatomic
strength, proportional to controllable s-wave scattering length
as(t ), and the harmonic trap modeled by

U (r) = 1

2
m[ω2x2 + ω2

⊥(y2 + z2)], (2)

with the static longitudinal and transverse trapping frequen-
cies being ω and ω⊥. Here the time-dependent as(t ) can be
modulated by the external magnetic field through a Feshbach
resonance for our proposal.

For sufficiently tight radial confinement (ω � ω⊥), it is
reasonable to assume a reduction to a quasi-1D GP equation
by using the wave function [44],

�(r, t ) = ψ (x, t ) exp[−(y2 + z2)/2σ⊥]/
√

πσ 2
⊥, (3)

with σ⊥ = √
h̄/mω⊥ being the transverse width, when the

traverse energy E⊥ = h̄ω⊥. By substituting Eq. (3) into Eq. (1)
and integrating the underlying 3D GP equation in the trans-
verse directions, we obtain

[
ih̄

∂

∂t
+ h̄2

2m

∂2

∂x2
− E⊥ − 1

2
mω2x2 − g1D(t )|ψ |2

]
ψ = 0,

(4)
with g1D(t ) = g3D(t )/2πσ 2

⊥. For convenience, we introduce
the dimensionless variables with tildes in physical units:
t̃ = ω⊥t , ω̃ = ω/ω⊥, x̃ = x/σ⊥, g̃(t ) = g(t )/h̄ω⊥σ⊥, with im-
posed g(t ) ≡ g1D(t ) = 2Nh̄ω⊥as(t ), such that the reduced 1D
GPE equation for wave function ψ (x, t ) along the longitudinal
direction reads

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ 1

2
ω2x2ψ + g(t )|ψ |2ψ. (5)

Here all variables are dimensionless and we ignore the tilde
notation from now on, for simplicity.

Since the 1D nonlinear Schrödinger equation supports the
ground state in the form of a bright soliton, we consider the
standard sech ansatz, instead of the Gaussian ansatz,

ψ (x, t ) = A(t )sech

[
x

a(t )

]
eib(t )x2

, (6)

for describing the dynamics, where the amplitude A(t ) =√
N/2a(t ) is normalized by

∫ +∞
−∞ |ψ |2dx = 2a(t )A2(t ) = N ,

a(t ) is the longitudinal size of the atomic size, and b(t ) repre-
sents the chirp and has relevance to currents. In order to apply
the time-dependent variational principle [27,28], we write the
Lagrangian density L,

L = i

2

(
∂ψ

∂t
ψ∗ − ∂ψ∗

∂t
ψ

)

− 1

2
|∂ψ

∂x
|2 − 1

2
g(t )|ψ |4 − 1

2
ωx2|ψ |2, (7)

where the asterisk denotes complex conjugation. Inserting
Eq. (6) into Eq. (7), we calculate a grand Lagrangian by
integrating the Lagrangian density over the whole coordinate
space, L = ∫ +∞

−∞ Ldx. Applying the Euler-Lagrange formulas
δL/δp = 0, where p presents one of the parameters a(t ) and
b(t ), we obtain b = ȧ/2a(t ) and the following differential
equations:

ä + ω2a(t ) = 4

π2a3(t )
+ 2g(t )

π2a2(t )
. (8)

This resembles the generalized Ermakov equation [32,34],
which can be exploited to design STA based on the inverse
engineering with the appropriate boundary conditions. The
main difference from previous results is that we concentrate
on the time modulation of the atomic interaction, instead of
trap frequency. In what follows, we shall be concerned with
the design STA by quenching the atomic interaction, within
minimal time.

III. SHORTCUTS TO ADIABATICITY

The generalized Ermakov equation (8) is analogous to
Newton’s second differential equation for a fictitious particle
with unit mass, with effective potential,

U (a) = 1

2
ω2a2 + 2

π2a2
+ 2g(t )

π2a
, (9)

as found in Landau’s mechanics [48]. In general, the dynamic
equation for the width a(t ) provides the analytical treatment
of the collective mode when ramping the atom-atom interac-
tion suddenly, g(t ) → 0 [23]. Here we aim to apply inverse
engineering to design the interaction for realizing the speed
up of adiabatic expansion when the experimental resolution is
improved by creating a bright soliton with a larger longitudi-
nal width [7,44]. Of course, the result can be directly extended
to soliton compression [29,49] without any effort.

Along this vein, we consider the fast transformation from
the initial state at t = 0 to the target one at t = τ , keeping
the shape invariant, where the initial width a(0) = ai ends up
with the targets a(τ ) = af by adjusting the interaction from
g(0) = gi to g(τ ) = gf . Here, af > ai (af < ai) implies the
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decompression (compression). To this end, we first introduce
the the boundary conditions,

a(0) = ai, a(τ ) = af , (10)

ȧ(0) = ȧ(τ ) = 0, (11)

ä(0) = ä(τ ) = 0, (12)

where ai and af are determined by the following equation:

a4 − 2g(t )

π2ω2
a = 4

π2ω2
, (13)

when g(t ) is specified by the initial and final values, g(0) = gi

and g(τ ) = gf . Equation (13) is the so-called adiabatic ref-
erence, resulting from Eq. (8) when the condition ∂U/∂a =
0, yielding ä = 0, is considered. This is analogous to the
perturbative Kepler problem [48], which actually indicates
that the fictitious particle stays adiabatically at the minimum
of the effective potential (9). Note that the application of
boundary conditions for ä (12) suggests the smooth changes
of atomic interaction at time edges. However, they are essen-
tially not necessary for designing the shortcut protocols, i.e.,
a bang-bang control. The only concern is that the initial and
final states are not the stationary states of the corresponding
Hamiltonians, with the sole boundary conditions (10). One
may have to change the interaction quickly after the state
preparation.

With boundary conditions (10)–(12), we apply the inverse
engineering based on Eq. (8). In order to exemplify STA, we
choose a simple polynomial ansatz,

a(t ) = ai − 6(ai − af )s5 + 15(ai − af )s4 − 10(ai − af )s3,

(14)
with s = t/τ and τ being the total time, fulfilling all of the
boundary conditions. After we interpolate the function of a(t ),
the interaction g(t ) is eventually designed from Eq. (8). The
designed interaction g(t ) is smooth, and the switching of the
scattering length can be easily implemented in the experi-
ments [7,22]. In principle, the total time τ can be arbitrarily
short from the viewpoint of mathematics. The polynomial
ansatz is simple, but not optimal at all. We are planning to
address the time-optimal control problem with the physical
constraint on the atomic interaction.

IV. TIME-OPTIMAL CONTROL AND SMOOTH
REGULARIZATION

A. “Bang-bang” control

In general, to minimize the cost function

J =
∫ τ

0
F[x(t ), u(t )]dt, (15)

the control Hamiltonian Hc, for the dynamical system ẋ =
f[x(t ), u(t )], is defined as

Hc(p, x, u) = p0F[x(t ), u(t )] + pT · f[x(t ), u(t )], (16)

where the superscript “T ′′ denotes the transpose of a vector,
and p0 < 0 can be chosen for convenience since it amounts to
multiplying the cost function by a constant. The Pontryagin’s
maximum principle states that the coordinates of the extremal

vector x and of the corresponding adjoint state p, formed
by nonzero and continuous Lagrange multipliers, fulfill the
Hamiltonian equations, ẋ = ∂Hc/∂p and ṗ = −∂Hc/∂x, to
attain the maximum Hc(p, x, u) = c (c being constant) at
u = u(t ), for almost all 0 � t � τ [45].

Now, we introduce x1(t ) = a, x2(t ) = ȧ and rewrite the dy-
namics of the system from (8) into two first-order differential
equations:

ẋ1 = x2, (17)

ẋ2 = −ω2x1 + 4

π2x3
1

+ 2u(t )

π2x2
1

, (18)

where the bounded control function u(t ) = g(t ). Without
loss of generality, we may simple choose ai = 1, af = γ ,
gi < 0, and gi < gf , when γ > 1 is considered for the de-
compression of a bright soliton with tunable interaction.
We formulate the time-optimal problem that drives the state
xi(t ) = {x1(t ), x2(t )} from the initial {1, 0} to final {γ , 0},
under the constraint gi � u(t ) � gf .

To find the minimal time τ , we define the cost function,

J =
∫ τ

0
1dt ≡ τ. (19)

Note that the Lagrangian (or running cost) F[x(t ), u(t )] = 1
in the time-optimal problem does not depend on u(t ), but the
cost J depends on the control u(t ) through xi(t ), which is
the trajectory that this control generates. This implies that the
minimal time τ relies on the constraint of controller u(t ) and
the corresponding trajectories; see the discussion below. Here
the control Hamiltonian Hc(p, x, u) (16) is written as

Hc(p, x, u) = p0 + p1x2 − p2ω
2x1 + 4p2

π2x3
1

+ 2p2u(t )

π2x2
1

,

(20)
with Lagrange multipliers being pi(t ) = {p1(t ), p2(t )}. As a
consequence, the Hamiltonian equation gives the explicit ex-
pression,

ṗ1 = p2

(
ω2 + 12

π2x4
1

+ 4u(t )

π2x3
1

)
, (21)

ṗ2 = −p1. (22)

It is clear that the control Hamiltonian Hc(p, x, u) is a linear
function of the control variable u(t ). Therefore, the maxi-
mization of Hc(p, x, u) is determined by the sign of the term
2p2u(t )/π2x2

1, which is only related with p2, since the width
a(t ) is always positive, i.e., x1 > 0, and p2 �= 0. Here, p2 = 0
does not provide the singular control and only happens at
specific instant moments (switching times) [50]. Actually,
when the Hamiltonian is linear in the control variable, the
application of Pontryagin’s maximum principle in optimal
control leads to pushing the control to its upper or lower
bound depending on the sign of the coefficient of u in the con-
trol Hamiltonian [45]. Typically, the optimal control switches
from one extreme to the other for the minimum-time problems
[40,51], which is referred to as a bang-bang solution. Thus,
we can obtain u(t ) = gf when p2 > 0 at time t ∈ (0, t1), and
u(t ) = gi when p2 < 0 at time t ∈ (t1, t1 + t2), such that the
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a(
t) (b)
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0
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x 2

(c)

A
B

C

FIG. 1. (a) Controller u(t ) of the bang-bang type, for the time-
optimal control of soliton decompression. (b) The evolution of a(t ),
i.e., the width of the bright soliton, is depicted. (c) The trajectory of
(x1, x2), where the initial point A = (1, 0), intermediate point B =
(xB

1 , xB
2 ), and final point C = (γ , 0) are illustrated. The parameters

are ω = 0.01, γ = 2, gi = −2.0005, gf = −1.0039, and τ = 7.0183
with the switching time t1 = 2.0325.

controller has the form of the bang-bang type [see Fig. 1(a)],

u(t ) =

⎧⎪⎨
⎪⎩

gi, t = 0
gf , 0 < t < t1
gi, t1 � t < t1 + t2
gf , t = t1 + t2 = τ.

(23)

As a consequence, the time-optimal control suggests the
abrupt changes of the controller at the switching times. When
control function u is constant, from Eqs. (17) and (18), one
can find that x1 and x2 satisfy

x2
2 + ω2x2

1 + 4

π2x2
1

+ 4u

π2x1
= c, (24)

with constant c. With the bang-bang protocol of controller
(23), the system evolves from the initial point A(1, 0), along
the intermediate one B(xB

1 , xB
2 ), and finally ends up with the

target point C(γ , 0), in the phase space (x1, x2).
Next, we manage to calculate the times for two segments,

AB and BC, by substituting u(t ) = gf or u(t ) = gi into dynam-
ical equations (17) and (18), respectively. Thus, we have the
equation for the first segment AB for t ∈ (0, t1),

x2
2 + ω2x2

1 + 4

π2x2
1

+ 4gf

π2x1
= c1, (25)

with c1 = ω2 + 4/π2 + 4gf/π
2, and the second segment BC

for t ∈ [t1, t1 + t2),

x2
2 + ω2x2

1 + 4

π2x2
1

+ 4gi

π2x1
= c2, (26)

with c2 = ω2γ 2 + 4/π2γ 2 + 4gi/π
2γ . The matching condi-

tion for the intermediate point B(xB
1 , xB

2 ) yields

xB
1 = 8g2

fγ
2

(γ + 1)[(γ − 1)(4 − ω2π2γ 2) + 4gfγ ]
, (27)

-1

6

0
0.02

7

0
0.04

8

1 0.06

FIG. 2. Minimum time τ vs trap frequency ω and physical con-
straint δ for bright soliton decompression, where the parameters are
the same as those in Fig. 1.

from which we can determine the switching time t = t1 and
the total time τ = t1 + t2 as follows:

τ = t1 + t2, (28)

where

t1 =
∫ xB

β

dx√
c1 − ω2x2 − 4/π2x2 − 4gf/π2x

, (29)

t2 =
∫ γ

xB

dx√
c2 − ω2x2 − 4/π2x2 − 4gi/π2x

. (30)

Figure 1 illustrate the trajectory of (x1, x2), corresponding
to the evolution of width a, by using the time-optimal solution
of soliton decompression with the controller u(t ) of the bang-
bang type. Here we take the parameters ω = 0.01γ = 2, gi =
−2.0005, and gf = −1.0039. In this case, the minimal time is
obtained as τ = 7.0183, with the switching time t1 = 2.0325.
Note that the minimal time is different from the cooling pro-
cess in the time-dependent harmonic trap [32,40,51], where
the attractive interaction slows down the cooling process, thus
decreasing the cooling rate of the thermodynamic cycle [32].

Furthermore, we display the effect of trap frequency ω

and the physical constraint on the minimal time τ in Fig. 2,
where the controller u(t ) is bounded by gi � u(t ) � δ and
other parameters are the same as those in Fig. 1. We visualize
that when the same physical constraint is set, the minimal time
τ decreases when the trap becomes tight, corresponding to the
large trap frequency. Meanwhile, the minimal time τ is de-
creased, and even approaches zero, when the large constraint
δ is allowed. In pursuit of shorter time in the decompression
process, the positive region is expected for the constraint δ.
Here we emphasize that the minimal time, depending on the
trap frequency and atom-atom interaction, has fundamental
implications for the efficiency and power in a quantum heat
engine with a bright soliton as the working medium [30]. Of
course, the STA compression or decompression can replace
the adiabatic branches in a quantum refrigerator, clarifying the
third law of thermodynamics as well [52].

So far, we attain the minimum-time control of bright-
soliton decompression with the bang-bang type; see Eq. (23).
This Heaviside function suggests the abrupt changes of inter-
atomic interaction. However, the sudden change of the s-wave
scattering length makes the soliton decompression unstable.
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When the operation time is much shorter, the interaction
changes rapidly from negative and positive by modulating an
external magnetic field. This could lead to significant atom
loss and heating across a Feshbach resonance.

B. Smooth regularization

Inspired by smooth regularization [47], we reformulate
the control function u(t ) to uε (t ) by introducing a real small
constant ε to avoid the dramatic change in the controller. For
this purpose, the system and controller are labeled by the
superscript ε, yielding the new continuous controller uε (t ),
and the regularized control system xε

i = (xε
1, xε

2 ) in the form
of

uε (t ) = (gε
i − δ)pε

2

2
√

[pε
2(t )]2 + ε2[pε

1(t )]2
, (31)

and

ẋ1
ε = xε

2, (32)

ẋ2
ε = −ω2xε

1 + 4

π2(xε
1 )3

+ 2uε (t )

π2(xε
1 )2

. (33)

These guarantee that uε (t ) reduces to u(t ), when ε = 0, as
seen in the control of the bang-bang type (23). In this scenario,
we can have the similar control Hamiltonian Hc(pε, xε, uε ) as
Eq. (20). As a result, the differential equation of the Lagrange
multipliers, pε

i = (pε
0, pε

1, pε
2), is obtained as

ṗε
1 = pε

2

(
ω2 + 12

π2(xε
1 )4

+ 4uε (t )

π2(xε
1 )3

)
, (34)

ṗε
2 = −pε

1. (35)

Here, xε
1 and xε

2 should satisfy the law of energy conservation
in Newton’s equation [see Eq. (24)], thus yielding

(xε
2 )2 + ω2(xε

1 )2 + 4

π2(xε
1 )2

+ 4uε (t )

π2xε
1

= cε . (36)

Obviously, the controller uε (t ) (31) is a continuous func-
tion of t , relying on the time-varying pε

2. Considering
the initial and target states, i.e., [xε

1 (0), xε
2 (0)] = (1, 0) and

[xε
1 (τ ε ), xε

2 (τ ε )] = (γ , 0), we map the controller u(t ) (23) into
the following sequence:

uε (t ) =

⎧⎪⎨
⎪⎩

gi, t = 0
(gε

i −δ)pε
2

2
√

[pε
2(t )]2+ε2[pε

1(t )]2
, 0 < t < τε

gf , t = τ ε.

(37)

By substituting this into Eqs. (32)–(35), we can finally solve
the problem with appropriate boundary conditions; see the
detailed discussion below.

The central idea of such regulation is the reformulation of
bang-bang control by a smooth function in terms of continu-
ous adjoint vector pi(t ). One can see that by introducing ε,
we smooth out the control function (31), which drives the
interaction g(t ) from δ to gi at switching times, without sud-
den change [see Fig. 3(a)], where different ε are applied for
producing the smooth regulation. To understand it better, the
corresponding trajectories of (xε

1, xε
2 ) and the adjoint vectors

(pε
1, pε

2) are also shown in Figs. 3(b) and 3(c). In the numerical
calculation, we use the continuous controller uε (t ) to solve

0 0.2 0.4 0.6 0.8 1
t/

-2

-1.5

-1

u(
t)

1 1.5 2
x1

0

0.1

0.2

0.3

x 2

0 5 10 15
p1

-60

-40

-20

0

20

p 2

(a)

(c)(b)

FIG. 3. (a) Smooth controller uε (t ) with different values: ε = 0
(blue solid curve), ε = 0.1 (cyan dashed curve), ε = 0.2 (red dash-
dotted curve), and ε = 0.3 (black dotted curve). (b) The trajectory
of (x1, x2), where the initial point A = (1, 0), intermediate point B =
(xB

1 , xB
2 ), and final point C = (γ , 0) are illustrated, with the related

Lagrange multipliers (p1, p2) in (c). The fixed δε is listed in Table I,
and other parameters are the same as those in Fig. 2.

the coupled differential equations [see Eqs. (32)–(35)] for
dynamics and adjoint vectors, by using the shooting method.
When the controller of the bang-bang type is replaced by the
regulated one (31), the total time τ and final state are depen-
dent on the different initial boundary conditions. So we have
to introduce two assumptions in the numerical calculation. On
one hand, the initial boundary conditions for pε

1(0) and pε
2(0)

should guarantee the maximization of control Hamiltonian
Hc(pε, xε, uε ), i.e., pε

2 > 0 (pε
2 < 0) when t < t1 (t > t1). On

the other hand, the constant cε in Eq. (36) at t = τ , featuring
the target state, should be as close as possible to c(γ , 0). In
detail, we take the p1(0) = −1 and p2(0) = 13.9915 when
ε = 0 as the reference. Then we simple fix pε

1(0) = −1 and
slightly change pε

2(0) to fulfill the aforementioned two condi-
tions. By using the shooting method, we apply the parameters
listed in Table I to achieve the suboptimal solution with a
smooth controller; see Fig. 3. It turns out that the small de-
viation gε

i makes the controller smooth at the cost of operating
time τ , with an error of magnitude less than 10−3; see Table I.

V. DISCUSSION

In this section, we will perform the numerical calculation.
To this aim, the imaginary-time evolution method is used

TABLE I. The parameters for the shooting method, where we
choose pε

1(0) = −1, and other parameter are the same as in Fig. 3.

ε gε
i /gi pε

2(0) pε
2(t1) cε[γ ε, xε

2 (τ )]

0 1 13.9915 9.9953 × 10−5 (2,0)
0.1 0.9979 14.1224 7.3087 × 10−5 (1.9991,0.0013)
0.2 0.9940 14.2316 85770 × 10−5 (1.9995,0.0031)
0.3 0.9896 14.4910 3.2556 × 10−5 (1.9998,0.0053)
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FIG. 4. (a) Comparison of the sech ansatz (red dashed) and
Gaussian (black dot-dashed) ansatz with the initial state (blue solid)
calculated from the imaginary-time method, where gi = −2.0005,
and trap frequency ω = 0.01. (b) The state evolution |ψ (x, t )|2,
numerically calculated from the split operator method, is presented
with the parameters in bang-bang control; see Fig. 1.

for obtaining the initial and final stationary states, and the
state that is evolving is numerically calculated by means of
the split-step method. The validity of the sech ansatz (6),
comparing with the Gaussian counterpart, is first checked out.
In Fig. 4(a), we confirm that the sech ansatz is more accurate
than the Gaussian one for the problem of soliton compression
or decompression, when ω � 1. The state evolution |ψ (x, t )|2
is carried out by using our designed protocols, starting from
the initial state; see Fig. 4(b). Remarkably, by using the time-
optimal bang-bang control, the bright-soliton matter wave can
be expanded within minimal time. However, during the state
evolution, the shape of the soliton is significantly distorted, re-
sulting from abrupt change of the controller u, i.e., the atomic
interaction. So the smooth regularization meets the require-
ment for remedying the difficulties in practical experiments,
for instance, the fast adjustment of the magnetic field, or the
induced heating or atom loss following magnetic field ramps
across a Feshbach resonance.

To quantify the stability, we define the fidelity as F =
|〈ψ ′

f (x)|ψ (x, t f )〉|2, where wave function ψ ′
f (x) is the final

stationary state given by the imaginary-time evolution as well.
Figure 5(a) shows that the smooth regulation improves the
stability of bang-bang control by smoothing out the controller
with the parameter ε. Moreover, for larger constraints of δ,
the sudden change of atom-atom interaction from negative
and positive will make the state evolution unstable. However,
the smooth regulation enhances the performance by avoiding
the sudden change [see Fig. 5(b)], as compared to the case of
bang-bang control. In other words, one can always shorten the
operation time by increasing the constraint δ. But it requires
the dramatic change of atom-atom interaction by applying
an external magnetic field. So, these results demonstrate that
there is a trade-off between stability and time, and smooth
regulation somehow helps the balance.

In a realistic BEC experiment, such as quench inter-
action for creating a bright soliton [7] and studying the
excitation mode [13], we offer an alternative approach for

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

F

(a)

-1 -0.5 0 0.5 1
0.95

0.955

0.96

F

(b)  = 0
 = 0.1
 = 0.2

FIG. 5. (a) Fidelity vs the parameter ε with the protocol de-
signed from smooth regularization. The blue solid and red dashed
curves present the results obtained from the 1D and 3D simulation,
respectively, where the parameters are the same as those in Fig. 1.
(b) Fidelity vs the physical constraint δ, for different ε, where ε = 0
(blue solid), ε = 0.1 (red dashed), and ε = 0.2 (black dot-dashed),
where other parameters are the same as those in Fig. 1.

improving unstable experimental conditions. The advantages
of smooth bang-bang protocols are twofold. One one hand, the
minimum-time protocol makes the soliton expansion as fast
as possible to prevent the atom loss, e.g., from inelastic three-
body collisions [23]. On the other hand, the smooth controller
is easy to implement practically, and can suppress the heating
and atom loss induced from the ramp of the interaction. In
order to give a reference, we calculate the adiabatic time
τ ad = 8.25 (F > 0.95) by using the linear ramp, g(t ) = gi +
(gf − gi )t/τ . When increasing γ = 5, the minimal time τ =
22.4 becomes much less than the adiabatic one τ ad = 179,
showing the advantage of bang-bang control. However, in the
quenching process with large γ , the smooth regularization is
necessarily required to improve stability by avoiding the dra-
matic change of controller, i.e., the atomic interaction. In the
BEC experiment with 7Li atoms, one can choose the follow-
ing physical parameters: ω⊥ = 710 × 2π Hz, m = 1.1654 ×
10−28 kg, N = 2 × 104, and γ = 2. Then, our results imply
that the minimum-time control of soliton expansion can be ex-
perimentally implemented by changing the scattering length,
ranging from as(0) = −0.1786 to as(τ ) = −0.0893 nm (Bohr
radius a0 = 5.3 nm) within the short time 1.5740 ms, which
is less than the typical coherent time and adiabatic time ∼50
ms for tuning the interaction through slow changes in the
magnetic field [7]. Finally, we emphasize that our model is
restricted to an effectively 1D trap with a strong transverse
confinement. But one may consider the influence of transverse
confinement within the framework of 3D GP equation [44]
[see Fig. 5(a)], where the dimensionless g3D(t ) = 2πg(t ) in
Eq. (1) is used in the numerical calculation, with our designed
protocols.

VI. CONCLUSION

In summary, we have studied the variation control of
a bright matter-wave soliton in the harmonic trap by
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manipulating the atomic interaction through Feshbach reso-
nances. By using the variational approximation, the motion
equation is derived for capturing the soliton’s shape, with-
out using the Lewis-Riesenfeld dynamical invariant [34] or
Thomas-Fermi limit [33,40,41]. Sharing with the concept of
STA, we inversely engineer the scatter length, i.e., atom-atom
interaction, for achieving the optimally fast but stable soliton
decompression. We apply the Pontryagin’s maximum prin-
ciple in optimal control theory to obtain the minimum-time
problem, which yields the discontinuous bang-bang proto-
col. Furthermore, the smooth regularization is further used to
smooth out the controller in terms of the shooting method.
Though we consider quasi-1D soliton expansion as an ex-
ample, our results presented here can be easily extended to
soliton decompression or compression [29,49], by varying
either the trap frequency or the interaction strength or both
[13,32], and other nonlinear optical systems [53], by connect-
ing to other methods of enhanced STA working for previously
intractable Hamiltonians as well [54]. We find that the exper-

imental relevance can benefit from our smooth time-optimal
STA protocols by suppressing the heating and atom losses.
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