341 research outputs found

    Multifunctional Bracts in the Dove Tree Davidia involucrata (Nyssaceae:Cornales)

    Get PDF
    Although there has been much experimental work on floral traits that are under selection from mutualists and antagonists, selection by abiotic environmental factors on flowers has been largely ignored. Here we test whether pollen susceptibility to rain damage could have played a role in the evolution of the reproductive architecture of Davidia involucrata, an endemic in the mountains of western China. Flowers in this tree species lack a perianth and are arranged in capitula surrounded by large (up to 10 cm#5 cm) bracts that at anthesis turn from green to white, losing their photosynthetic capability. Flowers are nectarless, and pollen grains are presented on the recurved anther walls for 5–7 days. Flower visitors, and likely pollinators, were mainly pollen-collecting bees from the genera Apis, Xylocopa, Halictus, and Lasioglossum. Capitula with natural or white paper bracts attracted significantly more bees per hour than capitula that had their bracts removed or replaced by green paper. Experimental immersion of pollen grains in water resulted in rapid loss of viability, and capitula with bracts lost less pollen to rain than did capitula that had their bracts removed, suggesting that the bracts protect the pollen from rain damage as well as attracting pollinators

    The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb <it>Aconitum gymnandrum </it>(Ranunculaceae).</p> <p>Results</p> <p>We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position.</p> <p>Conclusions</p> <p>This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.</p

    Testing the effect of individual scent compounds on pollinator attraction in nature using quasi-isogenic Capsella lines

    Get PDF
    Premise Floral scent, usually consisting of multiple compounds, is a complex trait, and its role in pollinator attraction has received increasing attention. However, disentangling the effect of individual floral scent compounds is difficult due to the complexity of isolating the effect of single compounds by traditional methods. Methods Using available quasi-isogenic lines (qILs) that were generated as part of the original mapping of the floral scent volatile-related loci CNL1 (benzaldehyde) and TPS2 (β-ocimene) in Capsella, we generated four genotypes that should only differ in these two compounds. Plants of the four genotypes were introduced into a common garden outside the natural range of C. rubella or C. grandiflora, with individuals of a self-compatible C. grandiflora line as pollen donors, whose different genetic background facilitates the detection of outcrossing events. Visitors to flowers of all five genotypes were compared, and the seeds set during the common-garden period were collected for high-throughput amplicon-based sequencing to estimate their outcrossing rates. Results Benzaldehyde and β-ocimene emissions were detected in the floral scent of corresponding genotypes. While some pollinator groups showed specific visitation preferences depending on scent compounds, the outcrossing rates in seeds did not vary among the four scent-manipulated genotypes. Conclusions The scent-manipulated Capsella materials constructed using qILs provide a powerful system to study the ecological effects of individual floral scent compounds under largely natural environments. In Capsella, individual benzaldehyde and β-ocimene emission may act as attractants for different types of pollinators

    the american naturalist january

    Get PDF
    abstract: Although there has been much experimental work on floral traits that are under selection from mutualists and antagonists, selection by abiotic environmental factors on flowers has been largely ignored. Here we test whether pollen susceptibility to rain damage could have played a role in the evolution of the reproductive architecture of Davidia involucrata, an endemic in the mountains of western China. Flowers in this tree species lack a perianth and are arranged in capitula surrounded by large (up to 10 cm) bracts cm # 5 that at anthesis turn from green to white, losing their photosynthetic capability. Flowers are nectarless, and pollen grains are presented on the recurved anther walls for 5-7 days. Flower visitors, and likely pollinators, were mainly pollen-collecting bees from the genera Apis, Xylocopa, Halictus, and Lasioglossum. Capitula with natural or white paper bracts attracted significantly more bees per hour than capitula that had their bracts removed or replaced by green paper. Experimental immersion of pollen grains in water resulted in rapid loss of viability, and capitula with bracts lost less pollen to rain than did capitula that had their bracts removed, suggesting that the bracts protect the pollen from rain damage as well as attracting pollinators

    A Study on Tunneling Current of ONO Films and Data Retention Effects in Flash Memories

    Get PDF
    Abstract In this research, 5 different thicknesses of oxide-nitride-oxide (ONO) inter-poly-gate dielectrics in flash memories are studied. Besides the experiments of analyzing program/erase speeds, various I-V tests have also being conducted to understand the tunneling characteristics of these ONO films. Data retention effects are also investigated by measuring the threshold voltage shifts consecutively up to 200 h of 250EC baking. All the findings are analyzed and concluded to propose a set of ONO film scaling rules

    Temporal scale‐dependence of plant–pollinator networks

    Get PDF
    The study of mutualistic interaction networks has led to valuable insights into ecological and evolutionary processes. However, our understanding of network structure may depend upon the temporal scale at which we sample and analyze network data. To date, we lack a comprehensive assessment of the temporal scale-dependence of network structure across a wide range of temporal scales and geographic locations. If network structure is temporally scale-dependent, networks constructed over different temporal scales may provide very different perspectives on the structure and composition of species interactions. Furthermore, it remains unclear how various factors – including species richness, species turnover, link rewiring and sampling effort – act in concert to shape network structure across different temporal scales. To address these issues, we used a large database of temporally-resolved plant–pollinator networks to investigate how temporal aggregation from the scale of one day to multiple years influences network structure. In addition, we used structural equation modeling to explore the direct and indirect effects of temporal scale, species richness, species turnover, link rewiring and sampling effort on network structural properties. We find that plant–pollinator network structure is strongly temporally-scale dependent. This general pattern arises because the temporal scale determines the degree to which temporal dynamics (i.e. phenological turnover of species and links) are included in the network, in addition to how much sampling effort is put into constructing the network. Ultimately, the temporal scale-dependence of our plant–pollinator networks appears to be mostly driven by species richness, which increases with sampling effort, and species turnover, which increases with temporal extent. In other words, after accounting for variation in species richness, network structure is increasingly shaped by its underlying temporal dynamics. Our results suggest that considering multiple temporal scales may be necessary to fully appreciate the causes and consequences of interaction network structure.Fil: Schwarz, Benjamin. Albert Ludwigs University of Freiburg; AlemaniaFil: Vazquez, Diego P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Cara Donna, Paul J.. Chicago Botanic Garden; Estados UnidosFil: Knight, Tiffany M.. German Centre for Integrative Biodiversity Research; AlemaniaFil: Benadi, Gita. Albert Ludwigs University of Freiburg; AlemaniaFil: Dormann, Carsten F.. Albert Ludwigs University of Freiburg; AlemaniaFil: Gauzens, Benoit. German Centre for Integrative Biodiversity Research; AlemaniaFil: Motivans, Elena. German Centre for Integrative Biodiversity Research; AlemaniaFil: Resasco, Julian. University of Colorado; Estados UnidosFil: Blüthgen, Nico. Universitat Technische Darmstadt; AlemaniaFil: Burkle, Laura A.. Montana State University; AlemaniaFil: Fang, Qiang. Henan University of Science and Technology; ChinaFil: Kaiser Bunbury, Christopher N.. University of Exeter; Reino UnidoFil: Alarcón, Ruben. California State University; Estados UnidosFil: Bain, Justin A.. Chicago Botanic Garden; Estados UnidosFil: Chacoff, Natacha Paola. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Huang, Shuang Quan. Central China Normal University; ChinaFil: LeBuhn, Gretchen. San Francisco State University; Estados UnidosFil: MacLeod, Molly. Rutgers University; Estados UnidosFil: Petanidou, Theodora. Univversity of the Aegean; Estados UnidosFil: Rasmussen, Claus. University Aarhus; DinamarcaFil: Simanonok, Michael P.. Montana State University; Estados UnidosFil: Thompson, Amibeth H.. German Centre for Integrative Biodiversity Research; AlemaniaFil: Fründ, Jochen. Albert Ludwigs University of Freiburg; Alemani

    Type IV Pili of Acidithiobacillus ferrooxidans Are Necessary for Sliding, Twitching Motility, and Adherence

    Get PDF
    We used conventional methods to investigate the mechanism by which Acidithiobacillus ferrooxidans colonizes a solid surface by assessing pili-mediated sliding, twitching motility, and adherence. A. ferrooxidans slided to form circular oxidized zones around each colony. This suggested that slide motility occurs through pili or flagella, though A. ferrooxidans strains ATCC 19859 and ATCC 23270 lack flagella. The results of reverse transcription-PCR demonstrated that the putative major pili gene of A. ferrooxidans strains ATCC 19859, ATCC 23270, and BY3 genes were transcribed. Culture of A. ferrooxidans between silicone gel and glass led to the production of type IV pili and the formation of rough twitching motility zones. When the bacteria were grown on lean ore cubes, pyrite was colonized readily by A. ferrooxidans and there is a correlation between pilus expression and strong attachment. However, non-pili bacteria attached minimally to the mineral surface. The results show a correlation between these functions and pilus expression
    corecore