80 research outputs found

    Analysis of Vegetation Vulnerability Dynamics and Driving Forces to Multiple Drought Stresses in a Changing Environment

    Get PDF
    Quantifying changes in the vulnerability of vegetation to various drought stresses in different seasons is important for rational and effective ecological conservation and restoration. However, the vulnerability of vegetation and its dynamics in a changing environment are still unknown, and quantitative attribution analysis of vulnerability changes has been rarely studied. To this end, this study explored the changes of vegetation vulnerability characteristics under various drought stresses in Xinjiang and conducted quantitative attribution analysis using the random forest method. In addition, the effects of ecological water transport and increased irrigation areas on vegetation vulnerability dynamics were examined. The standardized precipitation index (SPI), standardized precipitation-evapotranspiration index (SPEI), and standardized soil moisture index (SSMI) represent atmospheric water supply stress, water and heat supply stress, and soil water supply stress, respectively. The results showed that: (1) different vegetation types responded differently to water stress, with grasslands being more sensitive than forests and croplands in summer; (2) increased vegetation vulnerability under drought stresses dominated in Xinjiang after 2003, with vegetation growth and near-surface temperature being the main drivers, while increased soil moisture in the root zone was the main driver of decreased vegetation vulnerability; (3) vulnerability of cropland to SPI/SPEI/SSMI-related water stress increased due to the rapid expansion of irrigation areas, which led to increasing water demand in autumn that was difficult to meet; and (4) after ecological water transport of the Tarim River Basin, the vulnerability of its downstream vegetation to drought was reduced

    Model-Free Large-Scale Cloth Spreading With Mobile Manipulation: Initial Feasibility Study

    Full text link
    Cloth manipulation is common in domestic and service tasks, and most studies use fixed-base manipulators to manipulate objects whose sizes are relatively small with respect to the manipulators' workspace, such as towels, shirts, and rags. In contrast, manipulation of large-scale cloth, such as bed making and tablecloth spreading, poses additional challenges of reachability and manipulation control. To address them, this paper presents a novel framework to spread large-scale cloth, with a single-arm mobile manipulator that can solve the reachability issue, for an initial feasibility study. On the manipulation control side, without modeling highly deformable cloth, a vision-based manipulation control scheme is applied and based on an online-update Jacobian matrix mapping from selected feature points to the end-effector motion. To coordinate the control of the manipulator and mobile platform, Behavior Trees (BTs) are used because of their modularity. Finally, experiments are conducted, including validation of the model-free manipulation control for cloth spreading in different conditions and the large-scale cloth spreading framework. The experimental results demonstrate the large-scale cloth spreading task feasibility with a single-arm mobile manipulator and the model-free deformation controller.Comment: 6 pages, 6 figures, submit to CASE202

    GRACE-Based Terrestrial Water Storage in Northwest China: Changes and Causes

    Get PDF
    Monitoring variations in terrestrial water storage (TWS) is of great significance for the management of water resources. However, it remains a challenge to continuously monitor TWS variations using in situ observations and hydrological models because of a limited number of gauge stations and the complicated spatial distribution characteristics of TWS. In contrast, the Gravity Recovery and Climate Experiment (GRACE) could overcome the aforementioned restrictions, providing a new reliable means of observing TWS variation. Thus, GRACE was employed to investigate TWS variations in Northwest China (NWC) between April 2002 and March 2016. Unlike previous studies, we focused on the interactions of multiple climatic and vegetational factors, and their combined effects on TWS variation. In addition, we also analyzed the relationship between TWS variations and socioeconomic water consumption. The results indicated that (i) TWS had obvious seasonal variations in NWC, and showed significant decreasing trends in most parts of NWC at the 95% confidence level;(ii) decreasing sunshine duration and wind speed resulted in an increase in TWS in Qinghai province, whereas the increasing air temperature, ameliorative vegetational coverage, and excessive groundwater withdrawal jointly led to a decrease in TWS in the other provinces of NWC;(iii) TWS variations in NWC had a good correlation with water storage variations in cascade reservoirs of the upper Yellow River;and (iv) the overall interactions between multiple climatic and vegetational factors were obvious, and the strong effects of some climatic and vegetational factors could mask the weak influences of other factors in TWS variations in NWC. Hence, it is necessary to focus on the interactions of multiple factors and their combined effects on TWS variations when exploring the causes of TWS variations

    Electronic and magnetic phase diagrams of Kitaev quantum spin liquid candidate Na2_2Co2_2TeO6_6

    Full text link
    The 3d7d^7 Co2+^{2+}-based insulating magnet \NCTO{} has recently been reported to have strong Kitaev interactions on a honeycomb lattice, and is thus being considered as a Kitaev quantum spin liquid candidate. However, due to the existence of other types of interactions, a spontaneous long-range magnetic order occurs. This order is suppressed by applied magnetic fields leading to a succession of phases and ultimately saturation of the magnetic moments. The precise phase diagram, the nature of the phases, and the possibility that one of the field-induced phases is a Kitaev quantum spin liquid phase are still a matter of debate. Here we measured an extensive set of physical properties to build the complete temperature-field phase diagrams to magnetic saturation at 10 T for magnetic fields along the aa- and aa^*-axes, and a partial phase diagram up to 60 T along cc. We probe the phases using magnetization, specific heat, magnetocaloric effect, magnetostriction, dielectric constant, and electric polarization, which is a symmetry-sensitive probe. With these measurements we identify all the previously incomplete phase boundaries and find new high-field phase boundaries. We find strong magnetoelectric coupling in the dielectric constant and moderate magnetostrictive coupling at several phase boundaries. Furthermore, we detect the symmetry of the magnetic order using electrical polarization measurements under magnetic fields. Based on our analysis, the absence of electric polarization under zero or finite magnetic field in any of the phases or after...Comment: LA-UR-22-3257

    Continuous spin excitations in the three-dimensional frustrated magnet K2Ni2(SO4)3

    Full text link
    Continuous spin excitations are widely recognized as one of the hallmarks of novel spin states in quantum magnets, such as quantum spin liquids (QSLs). Here, we report the observation of such kind of excitations in K2Ni2(SO4)3, which consists of two sets of intersected spin-1 Ni2+ trillium lattices. Our inelastic neutron scattering measurement on single crystals clearly shows a dominant excitation continuum, which exhibits a distinct temperature-dependent behavior from that of spin waves, and is rooted in strong quantum spin fluctuations. Further using the self-consistent-gaussian-approximation method, we determined the fourth- and fifth-nearest neighbor exchange interactions are dominant. These two bonds together form a unique three-dimensional network of corner-sharing tetrahedra, which we name as ''hyper-trillium'' lattice. Our results provide direct evidence for the existence of QSL features in K2Ni2(SO4)3 and highlight the potential for the hyper-trillium lattice to host frustrated quantum magnetism.Comment: 6 pages and 5 figures, plus several pages of supplemental material, comments are welcom

    Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas

    Get PDF
    To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation
    corecore