18 research outputs found

    Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo

    Get PDF
    Ribonucleotides are the most abundant non-canonical component of yeast genomic DNA and their persistence is associated with a distinctive mutation signature characterized by deletion of a single repeat unit from a short tandem repeat. These deletion events are dependent on DNA topoisomerase I (Top1) and are initiated by Top1 incision at the relevant ribonucleotide 3′-phosphodiester. A requirement for the re-ligation activity of Top1 led us to propose a sequential cleavage model for Top1-dependent mutagenesis at ribonucleotides. Here, we test key features of this model via parallel in vitro and in vivo analyses. We find that the distance between two Top1 cleavage sites determines the deletion size and that this distance is inversely related to the deletion frequency. Following the creation of a gap by two Top1 cleavage events, the tandem repeat provides complementarity that promotes realignment to a nick and subsequent Top1-mediated ligation. Complementarity downstream of the gap promotes deletion formation more effectively than does complementarity upstream of the gap, consistent with constraints to realignment of the strand to which Top1 is covalently bound. Our data fortify sequential Top1 cleavage as the mechanism for ribonucleotide-dependent deletions and provide new insight into the component steps of this process

    Exonuclease VII repairs quinolone-induced damage by resolving DNA gyrase cleavage complexes

    Get PDF
    The widely used quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases, resulting in irreversible topoisomerase cleavage complexes (TOPcc). Whereas the excision repair pathways of TOPcc in eukaryotes have been extensively studied, it is not known whether equivalent repair pathways for prokaryotic TOPcc exist. By combining genetic, biochemical, and molecular biology approaches, we demonstrate that exonuclease VII (ExoVII) excises quinolone-induced trapped DNA gyrase, an essential prokaryotic type IIA topoisomerase. We show that ExoVII repairs trapped type IIA TOPcc and that ExoVII displays tyrosyl nuclease activity for the tyrosyl-DNA linkage on the 5′-DNA overhangs corresponding to trapped type IIA TOPcc. ExoVII-deficient bacteria fail to remove trapped DNA gyrase, consistent with their hypersensitivity to quinolones. We also identify an ExoVII inhibitor that synergizes with the antimicrobial activity of quinolones, including in quinolone-resistant bacterial strains, further demonstrating the functional importance of ExoVII for the repair of type IIA TOPcc

    Exonuclease VII repairs quinolone-induced damage by resolving DNA gyrase cleavage complexes

    Get PDF
    The widely used quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases, resulting in irreversible topoisomerase cleavage complexes (TOPcc). Whereas the excision repair pathways of TOPcc in eukaryotes have been extensively studied, it is not known whether equivalent repair pathways for prokaryotic TOPcc exist. By combining genetic, biochemical, and molecular biology approaches, we demonstrate that exonuclease VII (ExoVII) excises quinolone-induced trapped DNA gyrase, an essential prokaryotic type IIA topoisomerase. We show that ExoVII repairs trapped type IIA TOPcc and that ExoVII displays tyrosyl nuclease activity for the tyrosyl-DNA linkage on the 5\u27-DNA overhangs corresponding to trapped type IIA TOPcc. ExoVII-deficient bacteria fail to remove trapped DNA gyrase, consistent with their hypersensitivity to quinolones. We also identify an ExoVII inhibitor that synergizes with the antimicrobial activity of quinolones, including in quinolone-resistant bacterial strains, further demonstrating the functional importance of ExoVII for the repair of type IIA TOPcc

    Topoisomerase II-Induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity

    No full text
    Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs
    corecore