266 research outputs found
Smart Chair for Monitoring of Sitting Behavior
Sitting is a common behavior of human body in daily life. It is found that poor sitting postures can link to pains and other complications for people in literature. In order to avoid the adverse effects of poor sitting behavior, we have developed a highly practical design of smart chair system in this paper, which is able to monitor the sitting behavior of human body accurately and non-invasively. The pressure patterns of eight standardized sitting postures of human subjects were acquired and transmitted to the computer for the automatic sitting posture recognition with the application of artificial neural network classifier. The experimental results showed that it can recognize eight sitting postures of human subjects with high accuracy. The sitting posture monitoring in the developed smart chair system can help or promote people to achieve and maintain healthy sitting behavior, and prevent or reduce the chronic disease caused by poor sitting behavior. These promising results suggested that the presented system is feasible for sitting behavior monitoring, which can find applications in many areas including healthcare services, human-computer interactions and intelligent environment
Musculoskeletal biomechanical computational analysis of sitting posture and seat design
Ph.DDOCTOR OF PHILOSOPH
Rolling Bearing Incipient Fault Diagnosis Method Based on Improved Transfer Learning with Hybrid Feature Extraction
Data-driven based rolling bearing fault diagnosis has been widely investigated in recent years. However, in real-world industry scenarios, the collected labeled samples are normally in a different data distribution. Moreover, the features of bearing fault in the early stages are extremely inconspicuous. Due to the above mentioned problems, it is difficult to diagnose the incipient fault under different scenarios by adopting the conventional data-driven methods. Therefore, in this paper a new unsupervised rolling bearing incipient fault diagnosis approach based on transfer learning is proposed, with a novel feature extraction method based on a statistical algorithm, wavelet scattering network, and a stacked auto-encoder network. Then, the geodesic flow kernel algorithm is adopted to align the feature vectors on the Grassmann manifold, and the k-nearest neighbor classifier is used for fault classification. The experiment is conducted based on two bearing datasets, the bearing fault dataset of Case Western Reserve University and the bearing fault dataset of Xi’an Jiaotong University. The experiment results illustrate the effectiveness of the proposed approach on solving the different data distribution and incipient bearing fault diagnosis issues
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain-Computer Interface
Brain–computer interface (BCI) research has attracted worldwide attention and has been rapidly developed. As one well-known non-invasive BCI technique, electroencephalography (EEG) records the brain’s electrical signals from the scalp surface area. However, due to the non-stationary nature of the EEG signal, the distribution of the data collected at different times or from different subjects may be different. These problems affect the performance of the BCI system and limit the scope of its practical application. In this study, an unsupervised deep-transfer-learning-based method was proposed to deal with the current limitations of BCI systems by applying the idea of transfer learning to the classification of motor imagery EEG signals. The Euclidean space data alignment (EA) approach was adopted to align the covariance matrix of source and target domain EEG data in Euclidean space. Then, the common spatial pattern (CSP) was used to extract features from the aligned data matrix, and the deep convolutional neural network (CNN) was applied for EEG classification. The effectiveness of the proposed method has been verified through the experiment results based on public EEG datasets by comparing with the other four methods
Discrete and Soft Prompting for Multilingual Models
It has been shown for English that discrete and soft prompting perform strongly in fewshot learning with pretrained language models (PLMs). In this paper, we show that discrete and soft prompting perform better than finetuning in multilingual cases: Crosslingual transfer and in-language training of multilingual natural language inference. For example, with 48 English training examples, finetuning obtains 33.74% accuracy in crosslingual transfer, barely surpassing the majority baseline (33.33%). In contrast, discrete and soft prompting outperform finetuning, achieving 36.43% and 38.79%. We also demonstrate good performance of prompting with training data in multiple languages other than English
- …