4,974 research outputs found

    CRISPR-Cas9 ribonucleoprotein-mediated gene editing in the plant pathogenic fungus Magnaporthe oryzae

    Get PDF
    Magnaporthe oryzae, the cause of rice blast disease, is a model fungus for studying plant-pathogen interactions and a major threat to global agriculture. From changes made to their DNA, pathogens like M. oryzae have evolved characteristics like aggressiveness, host range, and fungicide resistance. Once source of DNA variation, arises from DNA repair. There are many sources of DNA damage, with the most severe being double-strand breaks (DSBs) which can lead to genome instability if left unrepaired. Hence, eukaryotes have evolved complex repair mechanisms like microhomology-mediated-end-joining (MMEJ), non-homologous-end-joining (NHEJ) and homologous-recombination (HR) to repair DNA DSBs. Interestingly, these repair pathways have different rates of fidelity, meaning some pathways create more mutations than others. In filamentous fungi, the mechanism by which MMEJ repairs DSBs is not well molecularly characterized, so the purpose of this project is to identify genes controlling MMEJ. To facilitate this, we created knockouts for homologs of DNA repair genes. Five genes were selected for deletion, including ligase 1 A & B, and polymerases θ, 3, and 4. Two CRISPR-Cas9 ribonucleoproteins were used to make DNA DSBs surrounding our target genes. Donor DNA encoding resistance to G418 antibiotic was supplied for insertion into the DSB site, where it served as a selectable marker when plated on complete media containing G418 antibiotics. DNA was extracted from individual colonies and used in PCR genotyping to test for the target gene and correct G418 integration. These knockouts will be characterized in future work to determine their individual roles in MMEJ DSB repair

    Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment

    Get PDF
    Enhancement of hematopoietic stem cell (HSC) homing and engraftment is clinically critical, especially for cord blood (CB) hematopoietic cell transplantation. Here we report that specific HDAC5 inhibition highly upregulates CXCR4 surface expression in human CB HSCs and progenitor cells (HPCs). This results in enhanced SDF-1/CXCR4-mediated chemotaxis and increased homing to the bone marrow environment, with elevated SCID-repopulating cell (SRC) frequency and enhanced long-term and secondary engraftment in NSG mice. HDAC5 inhibition increases acetylated p65 levels in the nucleus, which is important for CXCR4 transcription. Inhibition of nuclear factor-κB (NF-κB) signaling suppresses HDAC5-mediated CXCR4 upregulation, enhanced HSC homing, and engraftment. Furthermore, activation of the NF-κB signaling pathway via TNFα also results in significantly increased CXCR4 surface expression, enhanced HSC homing, and engraftment. These results demonstrate a previously unknown negative epigenetic regulation of HSC homing and engraftment by HDAC5, and allow for a new and simple translational strategy to enhance HSC transplantation

    2-Amino-4,6-dimethyl­pyrimidine–benzoic acid (1/1)

    Get PDF
    The crystal of the title compound, C6H9N3·C7H6O2, contains tetra­meric hydrogen-bonded units comprising a central pair of 2-amino­pyrimidine mol­ecules linked across a centre of inversion by N—H⋯N hydrogen bonds and two pendant benzoic acid mol­ecules attached through N—H⋯O and O—H⋯N hydrogen bonds. These hydrogen-bonded units are arranged into layers in (002)

    Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre

    Get PDF
    Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3

    4-Methyl-6-phenyl­pyrimidin-2-amine

    Get PDF
    The title compound, C11H11N3, was synthesized as part of our research into functionalized pyrimidines. It crystallizes with two independent mol­ecules in the asymmetric unit that differ only in the twist between the two aromatic rings; the torsion angles between the rings are 29.9 (2) and 45.1 (2)°. The crystal packing is dominated by inter­molecular N—H⋯N hydrogen bonds between independent and equivalent mol­ecules, forming an infinite three-dimensional network

    Neutrino oscillations in Kerr-Newman space-time

    Full text link
    The mass neutrino oscillation in Kerr-Newman(K-N) space-time is studied in the plane θ=θ0\theta=\theta_{0}, and the general equations of oscillation phases are given. The effect of the rotation and electric charge on the phase is presented. Then, we consider three special cases: (1) The neutrinos travel along the geodesics with the angular momentum L=aEL=aE in the equatorial plane. (2) The neutrinos travel along the geodesics with L=0 in the equatorial plane. (3) The neutrinos travel along the radial geodesics at the direction θ=0\theta=0. At last, we calculate the proper oscillation length in the K-N space time. The effect of the gravitational field on the oscillation length is embodied in the gravitational red shift factor. When the neutrino travels out of the gravitational field, the blue shift of the oscillation length takes place. We discussed the variation of the oscillation length influenced by the gravitational field strength, the rotation a2a^{2} and charge QQ.Comment: 20 pages, no figure
    corecore