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Hematopoietic stem cells (HSCs) are a rare population residing at the apex of the 

hematopoietic hierarchy [1]. HSCs have the capacity to self-renew and differentiate into all 

blood cell types, thus they play a key role in hematopoietic cell transplantation (HCT) [2]. 

HCT is widely used as a curative therapy for numerous malignant and non-malignant 

hematological and even non-hematological diseases [3]. The fast developing field of gene 

editing techniques, including ZFNs, TALENs and CRISPR-Cas9, broaden usage of HCT in 

clinical therapy of diseases caused by genetic mutations [4]. i.e. β-thalassaemia or Sickle 

Cell Disease (SCD) may possibly be interrogated by CRISPR based gene editing of β-globin 

in HSCs from patients [5]. However, efficient gene editing and infusion of the gene edited 
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HSC into patients requires sufficient numbers of donor HSC. In addition, when cord blood 

(CB) is used as the source of HSC for HCT, rare HSC numbers in single CB units may lead 

to delayed hematopoietic recovery in recipients [6]. It is thus important in some cases to 

develop efficient means that can overcome limited HSC numbers to enhance the efficacy of 

HCT.

Efforts are underway by many scientific groups to develop potential ways to improve 

engraftment of HSC. This includes mitigating EPHOSS [7], enhancing HSC homing 

efficiency [8–9], promoting ex vivo expansion [10–12], and by reprogramming iPS or 

endothelial cells to human HSC [13–14]. However, most of these methods have not yet been 

adapted for clinical use, and there is still an urgent need to dissect the mechanisms behind 

these encouraging processes. Rigorous phenotypic analysis of HSC is an easily accessible 

and important method to evaluate the function of a heterogeneous cell population from bone 

marrow or blood samples. The rigorous phenotyping identity of human HSC identity was 

confirmed at a single cell level [15]. In general, freshly isolated human HSC are defined as 

CD34+CD38−CD45RA−CD90+CD49f+. However, we still don’t know if all cells in different 

circumstances, especially under stress conditions such as ex-vivo expansion, that are 

identified by CD34+CD38−CD45RA−CD90+CD49f+ are functional HSC with long-term 

repopulating capacity.

In a compound screen for agonists of human CB HSC ex vivo expansion, we found that 100 

nM 12-deoxyphorbol-13-O-phenylacetate-20-acetate (DOPPA), a weak phorbol ester, 

significantly and greatly expands cytokine (stem cell factor (SCF), thrombopoietin (TPO), 

Flt-3 ligand (FL)) -stimulated phenotypic CB HSC population (CD34+CD38−CD45RA
−CD90+CD49f+) (Figure 1A). Compared with the vehicle control cultured group, the 

DOPPA group contains 12.4-fold more phenotypic-defined HSCs after 4-days ex vivo 

culture (Figure 1B). The phenotypic HSC number in DOPPA-treated group was ~2.5 fold 

greater than that seen the SR1 and UM171-treated groups at this 4-day culture time (Figure 

1B).

We then examined the effect of DOPPA treatment on hematopoietic progenitor cells (HPCs). 

DOPPA significantly increased numbers of CB colony-forming unit (CFU) granulocyte/

macrophage (GM), but not granulocyte, erythroid, macrophage, megakaryocyte (CFU-

GEMM) progenitors after 4 days ex vivo culture (Figure 1C), suggesting that DOPPA 

treatment selectively promotes ex vivo expansion of functionally recognizable granulocyte-

macrophage progenitors.

In order to determine if the DOPPA expanded phenotypic HSC population had repopulating 

or increased repopulating capacity in vivo, we performed limiting dilution analysis to 

quantify SCID-repopulating cells (SRCs) by intravenous (i.v.) injection in sublethally-

irradiated NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. The SRC frequency of DOPPA -

cultured CB CD34+ cells and human CD45+ cell chimerism did not significantly increase 

compared with that of uncultured CD34+ cells and vehicle control-treated CD34+ cells 

(Figure 1D–F; Supplementary Table 1), whereas numerous studies by others,10,11 and 

ourselves (unpublished data) have shown significantly enhanced SRCs after ex-vivo 
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expansion with SR1 and UM171. These data strongly suggest that the DOPPA-expanded 

phenotypically-defined HSC were not active as engrafting HSC.

Interestingly, we noticed that phenotypic HSC were significantly increased if we cultured 

the CD34+ cells just for 24 hours with a higher concentration of DOPPA (1μM) or other 

phorbol esters, including phorbol-12-myristate-13-acetate (PMA) (Supplementary Figure 

1A-B). We performed in vivo transplantation experiments to examine if PMA-induced 

phenotypic HSC have long-term engrafting capacity. 10,000 vehicle or PMA-cultured 

CD34+ cells were transplanted into sublethally-irradiated NSG mice. The human cell 

engraftment in the BM of the NSG recipients was determined 16 weeks after transplantation. 

Our data showed that CD34+ cells cultured with DOPPA or PMA did not engraft better than 

the cells cultured with vehicle control (Supplementary Figure 1C-D). To exclude the 

possibility that PMA might affect the homing efficiency of CD34+ cells, we did homing 

experiments to examine the human cell percentage engrafted into the bone marrow of the 

recipient NSG mice 24 hours after transplantation. We found that PMA treatment did not 

significantly change the homing efficiency of CB HSC and HPC (Supplementary Figure 2A-

B). Together, these data demonstrate that the PMA-induced phenotypic HSC after ex vivo 
culture with cytokines were not capable of functional engraftment with long-term 

repopulating activity.

To understand mechanisms behind the unusual inconsistency between ex vivo HSC 

phenotyping analysis and in vivo functional evaluation, we did RNA-sequencing analysis to 

check the transcriptome of vehicle and DOPPA-treated CD34+ cells after 4 days ex-vivo 

culture. We noticed that expression of many genes which encode cell surface proteins 

including ITGA6 (CD49f) were significantly up-regulated, FDR-adjusted p-value < 0.01 and 

the fold change (FC) > 2, by DOPPA treatment (Figure 2A). Gene ontology (GO) analysis 

revealed that many GO functions related to cell surface or plasma membrane related GOs 

which all include ITGA6 were significantly enriched in up-regulated differentially expressed 

genes (DEGs) including ITGA6 after DOPPA treatment (Figure 2B). Quantitative PCR 

analysis further demonstrated that ITGA6 mRNA levels apparently increased in DOPPA-

treated CD34+ HSCs and HPCs (Figure 2C). We also checked mRNA expression of 

THY1(CD90), another marker of human HSC, the signal of which was not detected by 

RNA-seq analysis due to its low abundance. The THY1 mRNA level was largely increased 

in DOPPA treated CD34+ HSCs and HPCs (Figure 2C). Flow cytometry analysis showed 

that ITGA6 and THY1 surface expression was largely promoted by DOPPA (Supplementary 

Figure 2C-D). Increased ITGA6 expression in DOPPA treated CD34+ cells was further 

confirmed by T-distributed Stochastic Neighbor Embedding (tSNE) analysis (Figure 2D). 

These data indicated that DOPPA treatment promoted transcription and cell surface 

expression of ITGA6 and THY1, and thus had changed the percentage of the 

phenotypically-defined cells during ex vivo culture. We also found many genes involved in 

myeloid differentiation that were significantly enriched by DOPPA (Supplementary Figure 

2E-F), consistent with the increased numbers of CFU-GM we had detected (Figure 1C). 

These data may partly explain the DOPPA treatment-induced expansion of CFU-GM.

Phenotypic analysis of HSCs is a widely used approach to relatively quickly sort or quantify 

numbers of HSC, allowing for a rapid read-out of these cells. However, not all published 
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studies have focused on the correlation between the phenotyping and reconstituting capacity 

of the cells. Phorbol ester short treatment significantly changed the transcription and 

expression of cell surface markers used to define HSC, including ITGA6 and THY1. Our 

findings provide an excellent example for investigators in this field that it is crucial for full 

analysis of effects on HSC function that engrafting studies always be performed to confirm 

functional activities, as phenotype may not always recapitulate function. The quantification 

of HSC is based on expression of several cell surface markers. In some circumstances, 

mRNA expression needs to be considered to exclude the possibility that the transcription of 

those genes encoding HSC markers were changed by the treatment. Future study will likely 

need to be performed to identify candidate HSC markers that can reflect the reconstituting 

capacity of the cells in different circumstances, especially under stress conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DOPPA expands human cord blood phenotypic hematopoietic stem cells without 
repopulating capacity.
(A) Representative FACS plots (from n = 3 independent experiments) showing ex vivo 
expansion of cord blood (CB) phenotypic hematopoietic stem cells (pHSCs) after treatment 

with vehicle (DMSO), DOPPA (100 nM), SR1 (1μM), UM171 (100 nM) for 4 days. The 

pHSC population was defined as CD34+CD38−CD45RA−CD49f+CD90+ cells.

(B) Quantification of pHSCs expanded by vehicle (DMSO), DOPPA (100 nM), SR1 (1 μM), 

or UM171 (100 nM) at day 4. Data are shown as mean±s.e.m.

(C) Quantification of CFU numbers in 50,000 CD34+ cells (for each well of the culture 

plate) of day 0 uncultured cells and the progeny of an equivalent number of CD34+ cells 

expanded by vehicle or DOPPA for 4 day (n = 9 cultures from three independent 

experiments per group). Data are shown as mean±s.e.m.
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(D) Poisson distribution analysis plot of the frequency of human SRCs in uncultured CB 

CD34+ cells (black line; group A) or in the progeny of an equivalent number of CD34+ cells 

that were cultured with vehicle (red line; group B) or DOPPA (green line; group C) for 4 d. 

(n = 7 to 10 mice per group). Circles represent the percentage of negative mice for each 

dose. Solid lines indicate the best-fit linear model for each data set. Dashed lines represent 

95% confidence intervals.

(E) SRCs (line in the box) in 1 × 106 CD34+ cells for each group and the relative 95% 

confidence intervals (box) are shown. L-Calc™ Software was used for Poisson statistical 

analysis. n.s. marks non-significant difference.

(F) Human CD45+ cell chimerism in the bone marrow of NSG recipient mice 4 months after 

transplantation. Data are shown as mean±s.e.m. One-way ANOVA followed by Tukey test 

was performed in figures (B), (C) and (F). *p<0.05; ***p<0.001.
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Figure 2. DOPPA treatment promotes transcription of genes encoding cell surface proteins 
including ITGA6 and THY1.
(A) Heat map showing differentially expressed genes (DEGs) associated with “cell surface” 

up-regulated by DOPPA treatment. Each group has three replicates (r1, r2, r3).

(B) Selected GOs that are significantly enriched in DOPPA-treated group compared with 

vehicle control group.

(C) Quantitative real-time PCR analysis of ITGA6 and THY1 expression in vehicle or 

DOPPA treated CD34+ cell. Data are shown as mean±s.d. Student’s t-test was performed. 

**p<0.01.

(D) tSNE analysis showing ITGA6 expression in vehicle or DOPPA treated CD34+ cells. 

CD34-APC gate was selected as the input. tSNE analysis was performed using FlowJo_V10 
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software to compare ITGA6 expression in vehicle or DOPPA treated groups. The circles 

indicate CD34+ cells with high levels of ITGA6.
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