549 research outputs found

    Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan

    Get PDF
    International audienceThe Generalized Likelihood Uncertainty Estimation (GLUE) is here incorporated into a deterministic landslide model (SHALSTAB) to generate 4000 landslide susceptibility maps which enclose various combinations of full range parameters. Furthermore, an improved index is adopted into GLUE as a criterion to measure model performance, and through that, 200 maps holding top 5% performance are retrieved. Proper ranges for parameters are obtained through GLUE yet they only perform well if combined appropriately. The 200 better maps are overlapped to construct an integrated landslide susceptibility map. Instead of giving a single parameter set or a single susceptibility map, the merit of extracting and integrating procedure is to envelope uncertainties inherited in model structure and input parameters. Bias due to subjective parameter input is potentially reduced. The entire procedure is applied to the Chi-Jia-Wan, a mountainous watershed in Taiwan. The integrated map shows high-risk area (>50% predicted landslide probability) only occupies 16.4% of the entire watershed while able to correctly identify 60% of the actual landslides. For areas above 2100 m height the map is even more successful (projects 77 of the 98 actual landslides). Interactions among parameters are discussed to highlight the unsolvable equifinality problem and improperness of presenting a single model result

    Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation

    Get PDF
    Climate change is projected to increase the intensity and frequency of extreme climatic events such as tropical cyclones. However, few studies have examined the responses of hydrochemical processes to climate extremes. To fill this knowledge gap, we compared the relationship between stream discharge and ion input–output budget during typhoon and non-typhoon periods in four subtropical mountain watersheds with different levels of agricultural land cover in northern Taiwan. The results indicated that the high predictability of ion input–output budgets using stream discharge during the non-typhoon period largely disappeared during the typhoon periods. For ions such as Na+, NH+4, and PO3−4, the typhoon period and non-typhoon period exhibited opposite discharge–budget relationships. In other cases, the discharge–budget relationship was driven by the typhoon period, which consisted of only 7 % of the total time period. The striking differences in the discharge–ion budget relationship between the two periods likely resulted from differences in the relative contributions of surface runoff, subsurface runoff and groundwater, which had different chemical compositions, to stream discharge between the two periods. Watersheds with a 17–22 % tea plantation cover showed large increases in NO−3 export with increases in stream discharge. In contrast, watersheds with 93–99 % forest cover showed very mild or no increases in NO−3 export with increases in discharge and very low levels of NO−3 export even during typhoon storms. The results suggest that even mild disruption of the natural vegetation could largely alter hydrochemical processes. Our study clearly illustrates significant shifts in hydrochemical responses between regular and typhoon precipitation. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions

    Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Get PDF
    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output – input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (β = 9.38, p = 0.002), vitality (β = 9.40, p < 0.001), mental health (β = 8.16, p = 0.004), physical function (β = 16.01, p < 0.001), and role physical (β = 22.66, p < 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe

    Adaptation of High-Growth Influenza H5N1 Vaccine Virus in Vero Cells: Implications for Pandemic Preparedness

    Get PDF
    Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 108 TCID50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes

    Pre-Operative Risk Factors Predict Post-Operative Respiratory Failure after Liver Transplantation

    Get PDF
    OBJECTIVE: Post-operative pulmonary complications significantly affect patient survival rates, but there is still no conclusive evidence regarding the effect of post-operative respiratory failure after liver transplantation on patient prognosis. This study aimed to predict the risk factors for post-operative respiratory failure (PRF) after liver transplantation and the impact on short-term survival rates. DESIGN: The retrospective observational cohort study was conducted in a twelve-bed adult surgical intensive care unit in northern Taiwan. The medical records of 147 liver transplant patients were reviewed from September 2002 to July 2007. Sixty-two experienced post-operative respiratory failure while the remaining 85 patients did not. MEASUREMENTS AND MAIN RESULTS: Gender, age, etiology, disease history, pre-operative ventilator use, molecular adsorbent re-circulating system (MARS) use, source of organ transplantation, model for end-stage liver disease score (MELD) and Child-Turcotte-Pugh score calculated immediately before surgery were assessed for the two groups. The length of the intensive care unit stay, admission duration, and mortality within 30 days, 3 months, and 1 year were also evaluated. Using a logistic regression model, post-operative respiratory failure correlated with diabetes mellitus prior to liver transplantation, pre-operative impaired renal function, pre-operative ventilator use, pre-operative MARS use and deceased donor source of organ transplantation (p<0.05). Once liver transplant patients developed PRF, their length of ICU stay and admission duration were prolonged, significantly increasing their mortality and morbidity (p<0.001). CONCLUSIONS: The predictive pre-operative risk factors significantly influenced the occurrence of post-operative respiratory failure after liver transplantation

    Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells

    Get PDF
    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD
    corecore