10,004 research outputs found
Recommended from our members
Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating uPAR-initiated cell signaling.
In glioblastoma (GBM), the EGF receptor (EGFR) and Src family kinases (SFKs) contribute to an aggressive phenotype. EGFR may be targeted therapeutically; however, resistance to EGFR-targeting drugs such as Erlotinib and Gefitinib develops quickly. In many GBMs, a truncated form of the EGFR (EGFRvIII) is expressed. Although EGFRvIII is constitutively active and promotes cancer progression, its activity is attenuated compared with EGF-ligated wild-type EGFR, suggesting that EGFRvIII may function together with other signaling receptors in cancer cells to induce an aggressive phenotype. In this study, we demonstrate that in EGFRvIII-expressing GBM cells, the urokinase receptor (uPAR) functions as a major activator of SFKs, controlling phosphorylation of downstream targets, such as p130Cas and Tyr-845 in the EGFR in vitro and in vivo. When EGFRvIII expression in GBM cells was neutralized, either genetically or by treating the cells with Gefitinib, paradoxically, the cells demonstrated increased cell migration. The increase in cell migration was explained by a compensatory increase in expression of urokinase-type plasminogen activator, which activates uPAR-dependent cell signaling. GBM cells that were selected for their ability to grow in vivo in the absence of EGFRvIII also demonstrated increased cell migration, due to activation of the uPAR signaling system. The increase in GBM cell migration, induced by genetic or pharmacologic targeting of the EGFR, was blocked by Dasatinib, highlighting the central role of SFKs in uPAR-promoted cell migration. These results suggest that compensatory activation of uPAR-dependent cell signaling, in GBM cells treated with targeted therapeutics, may adversely affect the course of the disease by promoting cell migration, which may be associated with tumor progression
Edge-based FEM-BEM for wide-band electromagnetic computation
Author name used in this publication: S. L. HoAuthor name used in this publication: H. C. Wong2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis
In view of the extensive literature on phytochrome mutants in the Ler accession of Arabidopsis, we sought to secure a phytochrome-null line in the same genetic background for comparative studies. Here we report the isolation and phenotypic characterization of phyABCDE quintuple and phyABDE quadruple mutants in the Ler background. Unlike earlier studies, these lines possess a functional allele of FT permitting measurements of photoperiod-dependent flowering behavior. Comparative studies of both classes of mutants establish that phytochromes are dispensable for completion of the Arabidopsis life cycle under red light, despite the lack of a transcriptomic response, and also indicate that phyC is nonfunctional in the absence of other phytochromes. Phytochrome-less plants can produce chlorophyll for photosynthesis under continuous red light, yet require elevated fluence rates for survival. Unexpectedly, our analyses reveal both light-dependent and -independent roles for phytochromes to regulate the Arabidopsis circadian clock. The rapid transition of these mutants from vegetative to reproductive growth, as well as their insensitivity to photoperiod, establish a dual role for phytochromes to arrest and to promote progression of plant development in response to the prevailing light environment
Dynamic analysis of linear synchronous machines
Author name used in this publication: S. L. HoAuthor name used in this publication: S. Y. YangAuthor name used in this publication: K. W. E. ChengRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
In vitro callus induction and plant regeneration from mature seed embryo and young shoots in a giant sympodial bamboo, Dendrocalamus farinosus (Keng et Keng f.) Chia et H.L. Fung
The method for callus induction, adventitious shoot induction and plant regeneration derived from mature embryos of the seed and young shoots in Dendrocalamus farinosus was examined. For young shoots, the lowest callus induction frequency (21.0 to 29.7%) was obtained and the induced callus became brown and perished after two weeks. For mature embryos of the seed, an efficient protocol for callus induction, adventitious shoot induction and plant regeneration was developed. The best callus induction medium for mature embryos was observed to be Murashige and Skoog (MS) supplemented with 2.0 mg l-1 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in combination with 0.2 mg l-1 kinetin (Kn) plus 0.4 mg l-1 indole-3-butyric acid (IBA). Callus induction frequency was 95%. The highest adventitious shoot induction frequency (91.2 ± 2.18%) was obtained on MS medium supplemented with 2.5 mg l-1 kn plus 0.5 mg l-1 indole-3-acetic acid (IAA). The regenerated adventitious shoots were rooted in vitro on MS medium with 0.4 mg l-1 IBA plus 0.25 mg l-1 IAA. Rooted plantlets successfully acclimatized to the greenhouse and 90.1% survived after being transplanted to plastic pots (measuring 30 cm in diameter) with garden soil.Key words: Callus culture, plant regeneration, making-pulp use, Dendrocalamus farinosus
Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data
The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l-1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the KubelkaâMunk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid water
Dynamic model for piezotronic and piezo-phototronic devices under low and high frequency external compressive stresses (Featured)
In this work, we aim to establish a theoretical method for modelling the dynamic characteristics of piezotronics and piezo-phototronic devices. By taking the simplest piezotronic device, PN junction as an example, we combine the small signal model and the unified approach to investigate its diffusion capacitance and conductance when it is under both low and high frequency external compressive stresses. This approach is different from the traditional considerations that treat the piezopotential as a static value. Furthermore, we expand the theory into piezo-phototronic devices, e.g., a light emitting diode. The dynamic recombination rate and light emitting intensity are quantitatively calculated under different frequencies of external compressive stresses
A review of physical supply and EROI of fossil fuels in China
This paper reviews Chinaâs future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that Chinaâs total oil production will likely reach its peak, at about 230Â Mt/year (or 9.6Â EJ/year), in 2018; its total gas production will peak at around 350Â Bcm/year (or 13.6Â EJ/year) in 2040, while coal production will peak at about 4400Â Mt/year (or 91.9Â EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found
Association of Mineralocorticoid Receptor Antagonists With the Mortality and Cardiovascular Effects in Dialysis Patients: A Meta-analysis
Whether Mineralocorticoid receptor antagonists (MRA) reduce mortality and cardiovascular effects of dialysis patients remains unclear. A meta-analysis was designed to investigate whether MRA reduce mortality and cardiovascular effects of dialysis patients, with a registration in INPLASY (INPLASY2020120143). The meta-analysis revealed that MRA significantly reduced all-cause mortality (ACM) and cardiovascular mortality (CVM). Patients receiving MRA presented improved left ventricular mass index (LVMI) and left ventricular ejection fraction (LVEF), decreased systolic blood pressure (SBP) and diastolic blood pressure (DBP). There was no significant difference in the serum potassium level between the MRA group and the placebo group. MRA vs. control exerts definite survival and cardiovascular benefits in dialysis patients, including reducing all-cause mortality and cardiovascular mortality, LVMI, and arterial blood pressure, and improving LVEF. In terms of safety, MRA did not increase serum potassium levels for dialysis patients with safety. Systematic Review Registration: (https://inplasy.com/inplasy-protocol-1239-2/), identifier (INPLASY2020120143)
- âŠ