90,573 research outputs found

    Chern-Weil homomorphism in twisted equivariant cohomology

    Get PDF
    AbstractWe describe the Cartan and Weil models of twisted equivariant cohomology together with the Cartan homomorphism among the two, and we extend the Chern–Weil homomorphism to the twisted equivariant cohomology. We clarify that in order to have a cohomology theory, the coefficients of the twisted equivariant cohomology must be taken in the completed polynomial algebra over the dual Lie algebra of G. We recall the relation between the equivariant cohomology of exact Courant algebroids and the twisted equivariant cohomology, and we show how to endow with a generalized complex structure the finite-dimensional approximations of the Borel construction M×GEGk, whenever the generalized complex manifold M possesses a Hamiltonian G-action

    Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions

    Get PDF
    For quantum fields on a curved spacetime with an Euclidean section, we derive a general expression for the stress energy tensor two-point function in terms of the effective action. The renormalized two-point function is given in terms of the second variation of the Mellin transform of the trace of the heat kernel for the quantum fields. For systems for which a spectral decomposition of the wave opearator is possible, we give an exact expression for this two-point function. Explicit examples of the variance to the mean ratio Δ=(2)/(2)\Delta' = (-^2)/(^2) of the vacuum energy density ρ\rho of a massless scalar field are computed for the spatial topologies of Rd×S1R^d\times S^1 and S3S^3, with results of Δ(Rd×S1)=(d+1)(d+2)/2\Delta'(R^d\times S^1) =(d+1)(d+2)/2, and Δ(S3)=111\Delta'(S^3) = 111 respectively. The large variance signifies the importance of quantum fluctuations and has important implications for the validity of semiclassical gravity theories at sub-Planckian scales. The method presented here can facilitate the calculation of stress-energy fluctuations for quantum fields useful for the analysis of fluctuation effects and critical phenomena in problems ranging from atom optics and mesoscopic physics to early universe and black hole physics.Comment: Uses revte

    Mode decomposition and renormalization in semiclassical gravity

    Get PDF
    We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the environment. Subtleties related to divergences that appear when summing over all the modes are made explicit and clarified. Being closely connected with models used in the literature, we show how to completely reconcile the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with those obtained by other standard functional techniques.Comment: 4 pages, RevTeX, no figure

    Nonequilibrium Phase Transitions of Vortex Matter in Three-Dimensional Layered Superconductors

    Full text link
    Large-scale simulations on three-dimensional (3D) frustrated anisotropic XY model have been performed to study the nonequilibrium phase transitions of vortex matter in weak random pinning potential in layered superconductors. The first-order phase transition from the moving Bragg glass to the moving smectic is clarified, based on thermodynamic quantities. A washboard noise is observed in the moving Bragg glass in 3D simulations for the first time. It is found that the activation of the vortex loops play the dominant role in the dynamical melting at high drive.Comment: 3 pages,5 figure

    Mode entanglement of electrons in the one-dimensional Frenkel-Kontorova model

    Full text link
    We study the mode entanglement in the one-dimensional Frenkel-Kontorova model, and found that behaviors of quantum entanglement are distinct before and after the transition by breaking of analyticity. We show that the more extended the electron is, the more entangled the corresponding state. Finally, a quantitative relation is given between the average square of the concurrence quantifying the degree of entanglement and the participation ratio characterizing the degree of localization.Comment: 4 pages, 4 figures. V
    corecore