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We describe the Cartan and Weil models of twisted equivariant cohomology together with
the Cartan homomorphism among the two, and we extend the Chern–Weil homomorphism
to the twisted equivariant cohomology. We clarify that in order to have a cohomology
theory, the coefficients of the twisted equivariant cohomology must be taken in the com-
pleted polynomial algebra over the dual Lie algebra of G . We recall the relation between
the equivariant cohomology of exact Courant algebroids and the twisted equivariant co-
homology, and we show how to endow with a generalized complex structure the finite-
dimensional approximations of the Borel construction M ×G EGk , whenever the generalized
complex manifold M possesses a Hamiltonian G-action.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In ordinary equivariant cohomology there are two well-known models, the bigger while more geometrical Weil model
and the smaller while more algebraic Cartan model. In [12], the authors defined twisted equivariant cohomology following
the Cartan model and showed that the twisted equivariant cohomology satisfies the cohomology axioms under some natural
assumptions, for example, that the group G is a compact Lie group. Under these assumptions, the corresponding Cartan
model is twisted by a closed equivariant 3-form (Section 4.5). In the non-twisted case, the Cartan homomorphism gives a
quasi-isomorphism between the Weil and the Cartan models. In this article, we show (Sections 2, 3) that in the twisted
case, the twisted equivariant theory also has the corresponding twisted Weil model and that the Cartan homomorphism
could be extended to the twisted models yielding also a quasi-isomorphism between them. Moreover, we show that the
Chern–Weil homomorphism can also be extended to the twisted equivariant case, which we use to demonstrate that the
twisted equivariant cohomology is isomorphic to the twisted cohomology of the Borel construction; this provides us with
an alternative proof of the fact that the twisted cohomology is indeed a cohomology theory (cf. [12]).

One subtlety comes up when defining the equivariant theory in the twisted case. In the ordinary Cartan model, we
consider the complex (Ω∗(M) ⊗ S(g∗))G with the equivariant differential dG . In the twisted case we have to consider
the complex (Ω∗(M) ⊗ Ŝ(g∗))G where the Ŝ(g∗) is the completion of the algebra S(g∗), because otherwise, the twisted
cohomology defined over the uncompleted algebra could be non-finitely generated as we show in Appendix A.
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The twisted equivariant cohomology appeared as the equivariant theory of generalized complex manifolds [6,12–14].
Then in the case of a Hamiltonian G-action on a generalized complex manifold M , when G is compact and the finite ap-
proximations BGk of BG are symplectic, we apply the coupling construction using the principle G-bundle EGk → BGk to show
that the finite approximations of the Borel construction M ×G EGk are generalized complex as well. The explicit computation
of the twisting form here coincides with the result given by the twisted version of the Chern–Weil homomorphism.

The structure of the article is the following. In Section 2 we recall the twisted equivariant cohomology in both the Cartan
and the Weil models. We also clarify the subtlety about the completion mentioned above. The Chern–Weil homomorphism
and its consequences are shown in Section 3. In Section 4 we recall the basics on the symmetries of the exact Courant
algebroids as well as the definition of extended equivariant cohomology from [12]. Then we show that when the Lie group
G is compact the extended equivariant cohomology is isomorphic to some twisted equivariant cohomology. In Section 5, we
describe the coupling construction for Hamiltonian actions on generalized complex manifolds using principle G-bundles. Ap-
pendix A compares the cohomologies of the completed and uncompleted complexes for the twisted equivariant cohomology
using Example 4.11.

2. Twisted equivariant cohomology

In as much as the twisted cohomology is defined twisting the differential of the De Rham complex with a closed 3-form,
the twisted equivariant cohomology is defined by twisting the equivariant differential with a closed and equivariant 3-form.

We will define the twisted equivariant cohomology using the Cartan model and we will explicitly show the relation with
the twisted Weil model. Then we will generalize the Chern–Weil map for twisted equivariant cohomology and we will finish
by giving the topological counterpart of the twisted equivariant cohomology.

Remark 2.1. We would like to emphasize the fact that the twisted cohomology is a Z2-graded theory; therefore all inverse
limits that will be carried out in this section will be Z2-graded. Let us see the difference with a simple example:

Take the Z-graded rings H∗(CPn) = R[x]/xn+1 where |x| = 2. The inverse limit of these Z-graded rings is the polynomial
algebra H∗(CP∞) = R[x]. Now, if one consider the same rings H•(CPn) = R[x]/xn+1 but Z2-graded, as in the case of
twisted cohomology, the inverse limit of these rings gives the algebra of formal series H•(CP∞) = R�x�.

To distinguish between Z- and Z2-graded theories we will denote the former with an asterisk H∗ and the latter with a
bullet H• .

Let us start by recalling the models of Cartan and Weil for the equivariant cohomology (see [18]).

2.1. Equivariant cohomology

Following Weil one introduces a universal model for the curvature and connection on a principal G-bundle. The Weil
algebra is then by definition

W (g) := S
(
g∗) ⊗ Λ

(
g∗)

the tensor product of the symmetric algebra and the exterior algebra of g∗ . If we denote with lower case letters a,b, c, . . .
a base for the Lie algebra g then we will denote by θa the variables dual to a of degree one that generate the exterior
algebra, and by Ωa the variables of degree two that generate the symmetric algebra.

The derivations and contractions on this algebra are generated by

ιaθ
b = δab, ιaΩ

b = 0, dθa = Ωa − 1

2
f a
bcθ

bθ c, dΩa = f a
bcΩ

bθ c,

where f a
bc are the structural constants: [b, c] = f a

bca.
The tensor product Ω∗(M) ⊗ W (g) is a differential graded algebra with a g-action and derivations ιa satisfying the

standard identities of the contractions. The contractions ιa act on the differential forms Ω∗(M) by contracting on the
direction of the vector field Xa that a generates, but to make the notation less heavy we will simply denote ιa the operator
ιXa . The Lie derivative La is defined by the Cartan formula La = dιa + ιad.

The basic subalgebra

Ω∗
g(M) := {

Ω∗(M) ⊗ W (g)
}

bas :=
⋂

a

(ker La ∩ ker ιa)

is a differential graded algebra whose elements are called (Weil) equivariant differential forms and whose cohomology
H∗(Ω∗

g(M)) is the G-equivariant cohomology of M .
Cartan [7] (cf. [18]) showed that there is a smaller model for the equivariant forms which is given by the G-invariant

forms on (Ω∗(M) ⊗ S(g∗))g with differential given by dg = d − Ωaιa . Let us denote the cohomology of this complex by
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H∗
g(M) := H∗((Ω∗(M) ⊗ S

(
g∗))g

,dg

)
.

Cartan showed that there is a homomorphism

j : Ω∗(M) ⊗ S
(
g∗) → Ω∗(M) ⊗ W (g),

α �→
∏

a

(
1 − θaιa

)
α

that induces a quasi-isomorphism of complexes

j : (Ω∗(M) ⊗ S
(
g∗))g ∼→ Ω∗

g(M) (2.1)

and therefore the map j induces an isomorphism of equivariant cohomologies

j : H∗
g(M)

∼=→ H∗(Ω∗
g(M)

)
.

2.2. Twisted equivariant cohomology

Let us start by taking a closed equivariant 3-form H = H + Ωaξa on the Cartan complex (Ω∗(M) ⊗ S(g∗))g with H a
3-form and ξa 1-forms on M .

The fact that H is closed implies that

dgH = (
d − Ωbιb

)(
H + Ωaξa

) = dH + Ωa(dξa − ιa H) − ΩaΩbιbξa = 0

which happens if and only if

dH = 0, dξa − ιa H = 0, and ιaξb = −ιbξa.

The fact that H is equivariant implies that for all b ∈ g

Lb H = Lb H + (
LbΩ

a)ξa + Ωa(Lbξa) = Lb H + f a
cbΩ

cξa + Ωa(Lbξa) = 0;
this happens if and only if H is g invariant and ξ[b,a] = Lbξa .

Let us now see what is the image in the Weil model of the three form H. We need this in order to have a very explicit
description of the twisted Chern–Weil homomorphism. Fortunately the expression of the three form turned out to be very
simple, its proof not; we will reproduce here the calculations.

Proposition 2.2. The image of H in Ω∗
g(M) under the quasi-isomorphism j defined in (2.1) is the basic three form

H := j(H) = H + d
(
θaξa

) − 1

2
d
(
θ pθqιqξp

)
.

Proof. We will proceed by expanding the derivations in the three form H and we will compare them with the expansion of
j(H).

Let us start by expanding H:

H = H + d
(
θaξa

) − 1

2
d
(
θ pθqιqξp

)
= H + Ωaξa − 1

2
f a
bcθ

bθ cξa − θadξa − 1

2
Ω pθqιqξp + 1

4
f p
rsθ

rθ sθqιqξp

+ 1

2
θ pΩqιqξp − 1

4
f q
tuθ pθ tθuιqξp − 1

2
θ pθqdιbξp

= H + Ωaξa − 1

2
θbθ cξ[b,c] − θadξa − Ω pθqιqξp + 1

2
θ rθ sθqιqξ[r,s] − 1

2
θ pθqdιbξp . (2.2)

Numerate from left to right the expressions in line (2.2). We will match them with the expansion of j(HG). Let us
calculate then:

j(HG) = (
1 − θeιe

)(
1 − θ cιc

)(
1 − θbιb

)(
H + Ωaξa

)
= H + Ωaξa − θbιb

(
H + Ωaξa

) + 1

2
θbθ cιcιb

(
H + Ωaξa

) − 1

6
θbθ cθeιeιcιb

(
H + Ωaξa

)
= H + Ωaξa − θbdξb − θbΩaιbξa + 1

θbθ cιcdξb − 1
θbθ cθeιeιcdξb.
2 6
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As we have that

ιcdξb = Lcξb − dιcξb = ξ[c,b] − dιcξb,

then

j(HG) = H + Ωaξa − θbdξb − θbΩaιbξa + 1

2
θbθ cξ[c,b] − 1

2
θbθ cdιcξb − 1

6
θbθ cθeιeιcdξb. (2.3)

We see that the first 6 terms in (2.3) match all but the sixth term in (2.2). Let us then expand the last term in (2.3):

−1

6
θbθ cθeιeιcdξb = −1

6
θbθ cθeιe(Lcξb − dιcξb)

= −1

6
θbθ cθe(ιeξ[c,b] − Leιcξb)

= −1

6
θbθ cθe(ιeξ[c,b] − ιc Leξb − ι[e,c]ξb)

= −1

6
θbθ cθe(ιeξ[c,b] − ιcξ[e,b] + ιbξ[e,c])

= −1

2
θbθ cθeιeξ[c,b]

and we can see that it matches the sixth term in (2.2). Here we have used the fact that

ι[e,c]ξb = f a
ecιaξb = − f a

ecιbξa = −ιbξ[e,c]. �
Let us note that as H is basic we have that ιaH = 0, LaH = 0 and dH = 0.
Having in hand the closed three forms defined previously, we can now change the differential in the Cartan model as

well as in the Weil model. But as the twisted equivariant cohomology is a Z2-graded theory, we first need to complete
the symmetric algebra S(g∗) in both the Cartan and the Weil models. The algebra Ŝ(g∗) is the a-adic completion of the
symmetric algebra S(g∗) where a is the ideal generated by all elements without constant term (see [2, Ch. 10]); in the
next section it will become clear why it is necessary to complete the symmetric algebra. If {a,b, c . . .} is a base of g and
Ωa,Ωb, . . . are dual elements of even degree then S(g∗) = R[Ωa,Ωb, . . .] and Ŝ(g∗) = R�Ωa,Ωb, . . .�. The completion of
the Weil algebra, let us denote by Ŵ (g) = Ŝ(g∗) ⊗ Λ(g∗).

Now, in the Cartan model define the twisted equivariant differential as

dg,H := dg − H∧
and in the Weil model as

dH := d − H ∧ .

As we have that (dg,H)2 = 0 and (dH)2 = 0, we can define:

Definition 2.3. The (Cartan) twisted equivariant cohomology is the cohomology of the complex of g-invariant forms of
Ω•(M) ⊗ Ŝ(g∗) and the twisted differential dg,H , i.e.

H•
g(M, H) := H•((Ω•(M) ⊗ Ŝ

(
g∗))g;dg,H

)
.

The (Weil) twisted equivariant cohomology is the cohomology of the basic forms Ω̂•
g(M) = (Ω•(M) ⊗ Ŵ (g))bas with the

twisted differential dH , i.e.

H•(Ω̂•
g(M),H

) := H•(Ω̂•
g(M);dH

)
.

As the map j : Ω•(M) ⊗ Ŝ(g∗) → Ω•(M) ⊗ Ŵ (g) induces a quasi-isomorphism of complexes j : (Ω•(M) ⊗ Ŝ(g∗))g →
Ω̂•

g(M) and j(HG) = H, then we can conclude that j also induces a quasi-isomorphism of twisted complexes. So we have

Proposition 2.4. The Cartan and the Weil twisted equivariant cohomologies are isomorphic,

j : H•
g(M, H)

∼=→ H•(Ω̂•
g(M),H

)
.
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In [12] the last two authors have shown that the twisted equivariant cohomology possesses all the properties of a coho-
mology theory (we will provide an alternative proof in the next section). Moreover, as the twisted equivariant cohomology
is a module over the symmetric algebra S(g∗)g (the equivariant cohomology of a point) then the last two authors have
shown that a generalization of the localization theorem of Atiyah–Bott [1] in the case of torus actions holds for the twisted
equivariant cohomology; namely, for F = MG the fixed point set of the action, and i : F → M the inclusion, one has that in
a suitable localization, for all classes x ∈ H•

g(M, H) the following formula holds:

x =
∑
Z⊂F

i Z∗
(
i∗Z (x)

) ∧ eG(νZ )−1

where Z runs over the connected components of F , and eG(νZ ) is the equivariant Euler class of νZ the normal bundle of Z
in M (see Theorem 7.2.5 in [12]).

3. Twisted Chern–Weil homomorphism

In this section we will extend the Chern–Weil homomorphism for the twisted case. Then let us start by recalling the
basics of Chern–Weil theory. From now on the Lie group G will be compact and therefore all equivariant cohomologies will
have the subscript G .

Let P be a principal G-bundle together with its connection and curvature

θ ∈ (
Ω1(P ) ⊗ g

)G
, Ω ∈ (

Ω2(P ) ⊗ g
)G

,

satisfying the identities

ιXθ = X, ιXΩ = 0 (X ∈ g), Ω = dθ + 1

2
[θ, θ ] and dΩ = [Ω,θ ].

The connection and curvature determine maps

g∗ → Ω1(P ), g∗ → Ω2(P )

that induce a homomorphism of graded algebras

W (g) → Ω∗(P )

which is the unique homomorphism carrying the universal connection and curvature to the connection and curvature of P .
This homomorphism is called the Weil homomorphism.

If M is a manifold with a G-action, then the Weil homomorphism for the G-principal bundle M × P → M ×G P (where
G-acts diagonally) combined with the lifting of forms from M to P × M determine a homomorphism

w : Ω∗(M) ⊗ W (g) → Ω∗(M × P )

which induces a map of basic subalgebras

w : Ω∗
G(M) → Ω∗(M × P )bas

∼= Ω∗(M ×G P )

which is a homomorphism of differential graded algebras. This map is known as the Chern–Weil homomorphism determined
by the connection in M × P .

The induced homomorphism in cohomologies

w : H∗(Ω∗
G(M)

) → H∗(M ×G P )

is independent of the connection in P . Following [9, Th. 2.5.1, Pr. 2.5.5], we can choose finite-dimensional manifolds EGk
with free G-actions, and equivariant inclusions EGk → EGk+1 in such a way that EG = lim→ EGk becomes a model for the
universal G principal bundle with EG contractible. Then we have that Ω∗(EG) = lim← Ω∗(EGk) and that this complex is
acyclic. Moreover, the Chern–Weil map for each k

wk : Ω∗
G(M) → Ω∗(M ×G EGk)

induces a map

w : Ω∗
G(M) → Ω∗(M ×G EG) = lim← Ω∗(M ×G EGk) (3.1)

which becomes a quasi-isomorphism of complexes and therefore an isomorphism of cohomologies

H∗(Ω∗
G(M)

) ∼= H∗(M ×G EG).

Let us show that this result can be generalized to the twisted case.
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Theorem 3.1. Let H be a closed (Weil) equivariant 3-form in Ω3
G(M) and consider Hk := wk(H) and H = lim← Hk. Then the twisted

Chern–Weil homomorphisms

φk : (Ω̂•
G(M),dH

) → (
Ω•(M ×G EGk),dHk

)
induce a homomorphism

φ : (Ω̂•
G(M),dH

) → (
Ω•(M ×G EG),dH

) := lim
←k

(
Ω•(M ×G EGk),dHk

)
which induces an isomorphism in twisted cohomologies

φ : H•(Ω̂•
G(M),H

) ∼= H•(M ×G EG, H) := H•(Ω•(M ×G EG),dH
)
.

Proof. Even though the complexes Ω̂•
G(M) and Ω•(M ×G EG) are Z2-graded, we could use the Z-grading of their untwisted

versions to define the filtration F pΩ̂•
G(M) and F pΩ•(M ×G EG) of all forms of degree greater or equal than p. The map φ

becomes a homomorphism of filtered complexes and therefore it gives rise to a map of spectral sequences with p-th term
φp : E∗,∗

p → E∗,∗
p .

The first terms of these spectral sequences are

E∗,∗
1 = (

Ω∗
G(M),d

)
and E∗,∗

1 = (
Ω∗(M ×G EG),d

)
and φ1 is simply the Chern–Weil map w of (3.1). By the equivariant de Rham theorem the second term becomes isomorphic

φ2 : E∗,∗
2 = H∗(Ω∗

G(M)
) ∼=→ E∗,∗

2 = H∗(M ×G EG),

then by Theorem 3.9 of [17] if the filtrations are exhaustive and complete we would have that φ induces an isomorphism
of twisted cohomologies

φ : H•(Ω̂•
G(M),H

) ∼= H•(M ×G EG, H).

Let us finish the proof by showing that both filtrations are complete. The filtrations are exhaustive because the filtrations
were defined by the degree.

The twisted cohomology H•(Ω̂•
G(M),H) is complete because the twisted complex is complete; this follows from the

following equalities

Ω(M) ⊗ Ŵ (g) = lim← Ω(M) ⊗ Ŵ (g)/F p Ŝ
(
g∗) = lim← Ω(M) ⊗ Ŵ (g)/

(
F pΩ(M) ⊗ Ŵ (g)

)
.

For the twisted cohomology H•(M ×G EG, H) we will also show its completeness by showing it at the level of the twisted
complex. For this we just need to show that the induced map

ψ : lim
←k

Ω•(Mk) → lim←p
lim
←k

Ω•(Mk)/F pΩ•(Mk)

is an isomorphism, where we have denoted Mk = M ×G EGk to simplify the notation. As the filtration is exhaustive, then the
map ψ is injective. Now let us show that is surjective.

Any element

α ∈ lim←p
lim
←k

Ω•(Mk)/F pΩ•(Mk)

consists of a sequence α = {αp}p where αp ∈ lim←k Ω•(Mk)/F pΩ•(Mk) and αp+1 �→ αp . Each αp consists also of a se-
quence αp = {αp,k}k where αp,k ∈ Ω•(Mk)/F pΩ•(Mk) and αp,k+1 �→ αp,k . Therefore we have that the α’s satisfy

αp+1,k+1 αp+1,k

αp,k+1 αp,k.

Note that if d(k) is the dimension of Mk = M ×G EGk then for p > d(k) we have that

Ω•(Mk)/F pΩ•(Mk) = Ω•(Mk),

and therefore for all p > d(k), αp,k = αd(k)+1,k .
So, define βk := αd(k)+1,k and consider the element

β = {βk}k ∈ limΩ•(Mk).
←k
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We claim that ψ(β) = α. For this let us see that for p fixed β �→ αp , and this easy to check because for d(k) < p then
αp,k = αd(k)+1,k = βk , and for d(k) � p then βk = αd(k)+1,k �→ αp,k .

Then as the map ψ is an isomorphism the complex Ω•(M ×G EG) is complete and therefore the twisted cohomology
H•(M ×G EG, H) is complete. �

We have the following useful corollaries:

Corollary 3.2. If the equivariant cohomology class of twisting form H is zero, then

H0(Ω̂•
G(M),H

) ∼=
∞∏

i=0

H2i
G (M) and H1(Ω̂•

G(M),H
) ∼=

∞∏
i=0

H2i+1
G (M)

where H∗
G(M) is the equivariant cohomology of M.

Proof. Because H is cohomologous to zero we have that

H•(Ω̂•
G(M),H

) ∼= H•(Ω̂•
G(M),0

)
and by the Chern–Weill homomorphism we have that

H•(Ω̂•
G(M),0

) ∼= lim
←k

H•(M ×G EGk,0)

as the cohomology commutes with the inverse limit.
The spaces M ×G EGk are finite-dimensional manifolds, then their twisted cohomologies twisted by zero are isomorphic

to their cohomologies but Z2-graded, i.e.

H0(M ×G EGk,0) ∼=
∞⊕

i=0

H2i(M ×G EGk),

H1(M ×G EGk,0) ∼=
∞⊕

i=0

H2i+1(M ×G EGk).

Taking the inverse limit we have then

H0(M ×G EG,0) ∼=
∞∏

i=0

H2i(M ×G EG),

H1(M ×G EG,0) ∼=
∞∏

i=0

H2i+1(M ×G EG);

the result now follows from the Chern–Weil homomorphism for the untwisted case. �
Corollary 3.3. If G acts freely on M, then the twisted equivariant cohomology is isomorphic to the twisted cohomology of M/G.

Proof. This follows from the fact that twisted cohomology is a cohomology theory (see [3]) and the fact that M ×G EG and
M/G are homotopically equivalent. Therefore the twisted cohomology of M ×G EG is isomorphic to the twisted cohomology
of M/G . Note that in this case the twisted equivariant cohomology is finitely generated. This is because M/G is a manifold
and its twisted cohomology is finitely generated. �
Corollary 3.4. The twisted equivariant cohomology satisfies all the axioms of a cohomology theory.

Proof. Because of the Chern–Weil isomorphism, the twisted equivariant cohomology is isomorphic to the twisted co-
homology of the space M ×G EG. Because the twisted cohomology satisfies all the axioms of cohomology, the result
follows. �
Example 3.5. Let us calculate the twisted equivariant cohomology of the trivial action of G = S1 on M = S1 with the
equivariant three form [dθΩ] ∈ H3(Ω•

S1 (S1)) where [dθ] generates H1(S1) and R[Ω] is the symmetric algebra on one

generator, using the twisted Chern–Weil homomorphism of Theorem 3.1. Taking S2k+1 ⊂ Ck+1 as the set E S1
k , then we have

that M ×G EGk = S1 × CPk . The cohomology of S1 × CPk is
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H∗(S1 × CPk) = Λ[dθ] ⊗ R[Ω]/〈Ωk+1〉
and the three form induced by the Chern–Weil map is dθΩ .

As both manifolds S1 and CPk are formal, the twisted cohomology could be calculated from the cohomology of S1 ×CPk

and the operator −dθΩ∧, i.e.

H•(S1 × CPk;dθΩ
) = H•(H•(S1 × CPk);−dθΩ∧)

.

Then we have that

H•(S1 × CPk;dθΩ
) = R〈dθ〉 ⊕ R

〈
Ωk〉.

Now, if we take the inverse limit of these cohomologies we get

lim
←k

H•(S1 × CPk;dθΩ
) = lim

←k
R〈dθ〉 ⊕ R

〈
Ωk〉 = R〈dθ〉,

which implies that

H•(S1 × CP∞;dθΩ
) = R〈dθ〉

and therefore

H•(Ω̂•
S1

(
S1);dθΩ

) = R〈dθ〉.

4. Extended equivariant cohomology

In this section we show how the twisted equivariant cohomology arises as the equivariant theory for compact group
actions on exact Courant algebroids. We do not claim any originality in this section as most of the results (except the last
example) have appeared in a disorganized way in various other articles [5,6,12–15]. What we accomplish is to present all
the details in a clear and succinct way for the equivalence between the twisted equivariant cohomology and the extended
equivariant cohomology for compact Lie groups.

4.1. Exact Courant algebroid

An exact Courant algebroid is a Courant algebroid T M over a manifold M that fits into the exact sequence

0 T ∗M T M
a

T M 0.

The Courant algebroid T M is endowed with a nondegenerate symmetric bilinear form and a skew symmetric bracket
called Courant bracket (see [5,16]). One can always choose a splitting s : T M → T M with isotropic image (see [20,21]) such
that one can identify the extended Courant algebroid with the direct sum of the tangent and the cotangent bundles of M ,
namely

T M
∼=→ TM := T M ⊕ T ∗M,

X �→ (
a(X),X − s

(
a(X)

))
,

X �→ (X + ξ).

With this identification the Courant bracket on T M becomes the H-twisted Courant bracket on TM , where H is a closed
three form determined by the splitting:

[X + ξ, Y + η]H = [X, Y ] + L Xη − LY ξ − 1

2
d(ιXη − ιY ξ) − ιX ιY H;

and the bilinear form becomes:

〈X + ξ, Y + η〉 = 1

2
(ιXη + ιY ξ).

Let us emphasize that the splitting of the Courant algebroid is not canonical; for any two form B , the B-field transfor-
mation of the splitting

eB(X + ξ) = X + ξ + ιX B

gives another splitting of T M with twisting three form H − dB . The cohomology class [H] ∈ H3(M;R) is called the Ševera
class of T M .

From now on we will work with a chosen splitting of the Courant algebroid T M . Hence, the three form H will also be
fixed.
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4.2. Symmetries of the exact Courant algebroid

The group Diff M � Ω2(M) with composition

(λ,α) ◦ (μ,β) = (
λμ,μ∗α + β

)
acts on TM in the following way

(λ,α) ◦ (X + ξ) = λ∗ X + (
λ−1)∗

(ξ + ιXα) = λ∗ X + (
λ−1)∗

ξ + ιλ∗ Xα

and its induced action on the twisted Courant bracket becomes

(λ,α) ◦ [X + ξ, Y + η]H = [
(λ,α) ◦ (X + ξ), (λ,α) ◦ (Y + η)

]
(λ−1)∗(H−dα)

.

Hence, the group of symmetries of the exact Courant algebroid TM is

GH := {
(λ,α) ∈ Diff M � Ω2(M) | H = (

λ−1)∗
(H − dα)

}
The Lie algebra XH of GH is then

XH = {
(X, A) ∈ Γ (T M) ⊕ Ω2(M) | dA = −L X H = −dιX H

}
with Lie bracket[

(X, A), (Y , B)
] = ([X, Y ], L X B − LY A

)
,

and with infinitesimal action on TM given by

(X, A) ◦ (Y + η) = [X, Y ] + L Xη − ιY A.

Note then that (X, A) belongs to XH if and only if d(A + ιX H) = 0 (this equation will be of use later).

Definition 4.1. A Lie group G acts on the exact Courant algebroid TM if there is a homomorphism

G → GH , g �→ (λg,αg),

and a Lie algebra g acts infinitesimally on TM if there is a Lie algebra homomorphism

g → XH , a �→ (Xa, Aa).

4.3. Extended symmetries

Note that there is a homomorphism of algebras

κ : Γ (TM) → XH , (X + ξ) �→ (X,dξ − ιX H)

that sends the Courant bracket to the Lie bracket on XH . With this in mind we have an action of Γ (TM) on itself given by
the formula

(X + ξ) ◦ (Y + η) = [X, Y ] + L Xη − ιY (dξ − ιX H).

Definition 4.2. We will say that the Lie Group G (or the Lie algebra g) acts by extended symmetries on TM whenever:

• the infinitesimal action factors through Γ (TM) as algebras, i.e. there is an algebra homomorphism

δ : (g, [, ]) → (
Γ (TM), [, ]H

)
,

a �→ (Xa + ξa)

that makes the infinitesimal action be a �→ (Xa,dξa − ιXa H), and
• the image of g in Γ (TM) is an isotropic subspace, in other words, for every a,b ∈ g

〈Xa + ξa, Xb + ξb〉 = 0,

and what is the same

ιXaξb = −ιXb ξa and ιXaξa = 0.
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Remark 4.3. For an extended action δ : g → Γ (TM) the three form H + Ωaξa , with H the twisting form and ξa = δ(a) − Xa ,
would be closed and equivariant if and only if dξa = −ιa H , as this would imply that La H = dιa H = −ddξa = 0.

Remark 4.4. We would like to point out that an “extended action”, as we have defined above and in [12], is equivalent to
a “lifted action” as is defined in Section 2.3 of [4] (we use the skew-symmetric version of the Courant bracket while in [4]
is used the non-skew-symmetric version, but as in both cases the image of the Lie algebra must be isotropic, then the two
definitions agree). In [4,5] the authors call “extended action” a more general type of construction that includes Courant
algebras and Courant algebra morphisms a → Γ (TM) that extend the Lie algebra morphism g → Γ (T M).

4.4. Extended equivariant cohomology

In [12] the last two authors have defined an equivariant cohomology for extended actions. Let us recall the construction.
Consider the complex of differential forms Ω•(M) := Ωeven(M) ⊕ Ωodd(M) but with Z2 grading given by the parity of

the degree and odd differential dH := d − H∧ where H is a closed 3-form on M . The cohomology of this complex H•(M, H)

is known as the H-twisted cohomology of M .
For X = X + ξ ∈ Γ (TM) consider the even operator LX and the odd operator ιX that act on Ω•(M) in the following

way: for ρ ∈ Ω•(M) we have

ιXρ = ιXρ + ξ ∧ ρ and LXρ = L Xρ + (dξ − ιX H) ∧ ρ.

If we consider any two elements X,Y that lie in the image of the map δ : g → Γ (TM), then the operators L, ι and dH

behave in the following way with respect to the graded commutators (see [12, Thm. 4.4.3]):

[dH , ιX] = LX, [LX, LY] = L[X,Y]H , [ιX, ιY] = 0,

[LX, ιY] = ι[X,Y]H , [dH , LX] = 0, and [dH ,dH ] = 0.

Following the definition of the (Cartan) twisted equivariant complex done before, we will consider the algebra Ω•(M) ⊗
Ŝ(g∗) of formal series on g with values in Ω•(M).

If we consider an extended action δ : g → Γ (TM), we can extend the action of the operators Lδ(a) and ιδ(a) on the
generators Ω•(M) ⊗ Ŝ(g∗) in the natural way, namely

Lδ(a)

(
ρ ⊗ Ωb) := (Lδ(a)ρ) ⊗ Ωb + ρ ⊗ LaΩ

b and ιδ(a)

(
ρ ⊗ Ωb) := (ιδ(a)ρ) ⊗ Ωb,

and we can define the extended equivariant differential

dg,δ : Ω•(M) ⊗ Ŝ
(
g∗) → Ω•(M) ⊗ Ŝ

(
g∗)

as the odd operator

dg,δ := dH ⊗ 1 + Ωaιδ(a)

where the sum goes over a base of g and we are using the repeated index convention.
It is easy to check that

(dg,δ)
2ρ = −Ωa Lδ(a)ρ

and therefore the second two authors have proposed the following definition (see [12, Def. 5.1.1]):

Definition 4.5. Let δ : g → Γ (TM) be an extended action, then the g-extended equivariant complex of TM is the Z2-graded
complex

C•
g(TM; δ) := {

ρ ∈ Ω•(M) ⊗ Ŝ
(
g∗) | Lδ(a)ρ = 0 for all a ∈ g

}
with differential dg,δ . The cohomology of H•

g(TM; δ) of the complex C•
g(TM; δ) is the extended g-equivariant De Rham

cohomology of TM under the extended action defined by δ.

Let us note that the extended g-equivariant cohomology does not depend on the choice of splitting for T M and its
isomorphism class depends only on the Ševera class of the Courant algebroid. If one performs a B-field transform, the
action transforms δ to δ′(a) = Xa + ξa + ιXa B , one gets the isomorphism eB : Ω•(M) → Ω•(M) and therefore one obtains a
quasi-isomorphism of complexes C•

g(TM; δ) → C•
g(TM; δ′) with dg,δ′ := dH−dB ⊗ 1 + Ωaιδ′(a) that induces an isomorphism

of cohomologies H•
g(TM; δ) ∼= H•

g(TM; δ′).
Also, if we take the Cartan complex

C∗
g(M) = {

ρ ∈ Ω∗(M) ⊗ S
(
g∗) | L Xaρ = 0 for all a ∈ g

}
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with differential dgρ = dρ − ΩaιXaρ , then the extended g-equivariant complex C•
g(TM; δ) becomes a module over C∗

g(M)

and therefore the extended g-equivariant cohomology H•
g(TM; δ) is a module over the equivariant cohomology H∗

g(M). In
particular we have that H•

g(TM; δ) is also a module over S(g∗)g = H∗
g(·).

So far we do not know whether the extended equivariant cohomology fulfills all the properties of an equivariant coho-
mology theory, nor if it has a topological counterpart. Nevertheless, in the case that the group G is compact, the extended
equivariant cohomology turns out to be equivalent to what is known as twisted equivariant cohomology. This will be the
subject of what follows.

4.5. Extended equivariant cohomology for compact Lie groups

Now we will show that in the case of an extended action of a compact Lie group, one can find an appropriate choice
of splitting of the exact Courant algebroid in such a way that the extended equivariant cohomology becomes isomorphic to
the twisted equivariant cohomology defined previously.

Let us first show how the group of symmetries GH change after performing a B-field transform, thus changing the
splitting of TM . For (λ,α) ∈ GH it is easy to check that(

λ,α + λ∗B − B
) ◦ eB(X + ξ) = eB(

(λ,α) ◦ (X + ξ)
)
,

and therefore the group of symmetries changes to

eB : GH → GH−dB ,

(λ,α) �→ (
λ,α + λ∗B − B

)
. (4.1)

Let us denote H := H − dB .

Lemma 4.6. (See [5, Proposition 2.11].) Consider the action of a compact Lie group G on the extended Courant algebroid TM given by
the map G → GH , g �→ (λg,αg). Then there exists a 2-form B such that

αg + λ∗
g B − B = 0 for all g ∈ G;

and therefore after changing the splitting with B (see Eq. (4.1)), the action of G is only given by diffeomorphisms, i.e. G → GH , g �→
(λg,0). Moreover, the 3-form H = H − dB is G-invariant.

Proof. For g ∈ G and B ∈ Ω2(M) let us define the 2-form

g · B := (
λ−1

g

)∗
(B − αg).

This becomes an action of G on Ω2(M) as we have that

(hg) · B = (
λ−1

hg

)∗
(B − αhg) = (

λ−1
h

)∗(
λ−1

g

)∗(
B − λ∗

gαh − αg
)

= (
λ−1

h

)∗[(
λ−1

g

)∗
(B − αg) − αh

] = h · (g · B).

Now, taking a G-invariant metric dμ with total volume 1, we can define the 2-form

B :=
∫
G

(h · 0)dμ(h) =
∫
G

(
λ−1

h

)∗
αh dμ(h)

which clearly satisfies g · B = B for all g ∈ G , and therefore we have that λ∗
g B = B − αg .

The fact the H is invariant follows from the definition of GH ; for (λ,α) ∈ GH we have that λ∗H = H − dα. But for all
g ∈ G we have that αg = 0, then λ∗

g H = H . �
In the case that the compact Lie group G acts by extended symmetries

δ : g → Γ (TM) → XH ,

a �→ (Xa, ξa) �→ (dξa − ιXa H),

the change of splitting of Lemma 4.6 defines a map δ : g → Γ (TM),

δ(a) = Xa + ξa = Xa + ξa + ιXa B,

and as the action is only given by diffeomorphisms we have that the 2-forms dξa − ιXa H are all equal to zero. Therefore we
can conclude:
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Corollary 4.7. If the compact Lie group acts by extended symmetries and we perform the B-field transform of Lemma 4.6, then for all
a ∈ g we have that

dξa − ιXa H = 0

where the infinitesimal action is given by δ(a) = Xa + ξa.

Lemma 4.8. (See [5, Theorem 2.13].) Let the compact Lie group G act on TM by extended symmetries. Then, after performing the
B-field transform of Lemma 4.6, the 3-form

H := H + Ωaξa ∈ Ω∗(M) ⊗ S
(
g∗)

becomes G-invariant and dG -closed. Hence, it defines an equivariant De Rham class [H] ∈ H3
G(M).

Proof. Let us first check that H is G-invariant, so for a,b, c . . . a base of g we have that

Lb H = Lb H + (
LbΩ

a)ξa + Ωa(Lbξa)

= Lb H + (
f a
cbΩ

c)ξa + Ωa(ξ [b,a])

= Lb H + Ωcξ [c,b] + Ωaξ [b,a]
= 0

where we have used that Lbξa = ξ [b,a] . This last equality follows from the fact that the map g → Γ (TM) is an algebra map,
and so we have

ξ [a,b] = L Xaξb − L Xb ξa − 1

2
d(ιXaξb − ιXb ξa) + ιXb ιXa H

= L Xaξb − dιXb ξa − ιXb dξa + dιXb ξa + ιXb dξa

= L Xaξb.

Now let us calculate dG H:

dG H = dH + Ωa(dξa − ιa H) + ΩbΩc(ιbξa + ιaξb)

and as H is closed, dξa − ιa H = 0 because of Lemma 4.7 and

ιbξa + ιaξb = 〈Xa + ξa, Xb + ξb〉 = 0

as the action is isotropic (see Definition 4.2), then dG H = 0. �
Knowing that the 3-form H is invariant and closed, we can conclude this section with the following result:

Theorem 4.9. (See [12, Proposition 6.1.2].) Let the compact Lie group G act on TM by extended symmetries. Then the extended equiv-
ariant cohomology H•

g(TM, δ) is isomorphic to the twisted equivariant cohomology H•
G(M, H) where H is the equivariant closed

3-form of Lemma 4.8.

Proof. Let us perform the B-field transform of Lemma 4.6. Then we have a quasi-isomorphism of extended complexes
C•

g(TM, δ) → C•
g(TM, δ) that induces an isomorphism of cohomologies

H•
g(TM, δ) ∼= H•

g(TM, δ).

Now for ρ ∈ Ω•(M), we have that

Lδ(a)ρ = Laρ + (dξa − ιa H) ∧ ρ = Laρ,

and therefore the extended complex becomes

C•
g(TM, δ) = {

ρ ∈ Ω•(M) ⊗ Ŝ
(
g∗) | Laρ = 0 for all a ∈ g

}
with derivative d := d + Ωaι which can be expanded and transformed into
g,δ H δ(a)
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dg,δ = d − H ∧ +Ωaιa + Ωbξb ∧
= d + Ωaιa − (

H − Ωbξb
) ∧

= dg − H ∧
= d

g,H.

Thus the extended complex C•
g(TM, δ) is the same as the twisted complex

C•
G(M, H) = ((

Ω•(M) ⊗ Ŝ
(
g∗))G ;dg,H

)
.

Therefore the cohomologies H•
g(TM, δ) and H•

G(M, H) are the same. The theorem follows. �
Remark 4.10. Corollary 3.4 together with Theorem 4.9 imply that extended equivariant cohomology for compact Lie groups
satisfies the properties of a cohomology theory as are the Mayer–Vietoris long exact sequence, excision and the Thom
isomorphism. This was also proved in [12] using equivariant methods.

Let us finish this section with an example.

Example 4.11. Let G = S1 and M = S1 where G acts trivially on M , but with extended action given by the map

δ : R → Γ
(
TS1), δ(1) = dθ

where dθ ∈ Ω1(S1). The extended equivariant cohomology H•
g(TM, δ) becomes the cohomology of the complex

Ω•(S1) ⊗ R
[[Ω]] with differential dg,δ = d − dθΩ∧

which is the twisted equivariant cohomology H•
S1 (M,dθΩ).

One can check easily that the closed forms are the odd forms. Now let us see which odd forms are exact. Consider the
odd form f i dθΩ i and the even form g jΩ

j . The equation dg,δ(g jΩ
j) = f i dθΩ i is equivalent to the equations dg0 = f0 dθ

and dgi − gi−1dθ = f i dθ for i > 0. If
∫

S1 f0 dθ = 0 these equations are solved inductively starting from 0 and making sure
that one chooses the gi such that their integral satisfies

∫
S1 (gi + f i+1)dθ = 0.

Then the twisted equivariant cohomology is

H1
S1(M,dθΩ) = R and H0

S1(M,dθΩ) = 0,

which agrees with the calculations done in Example 3.5 using the twisted Chern–Weil isomorphism.

With this particular example one can show what happens in the case that the twisted cohomology is defined without
completing the symmetric algebra. The calculations will be done in Appendix A.

5. Hamiltonian actions on generalized complex manifolds

In this last section we will show how to induce a generalized complex structure on M ×G P whenever we have a
Hamiltonian G action on the generalized complex manifold M and P → Q is a G-principal bundle over a generalized
complex manifold Q .

Let us start by recalling the definitions and theorems of generalized complex geometry that will be used in what follows
(see [5,8,10,11,15,22]).

Definition 5.1. A generalized complex manifold is a manifold M together with one of the following equivalent structures:

• An endomorphism J : TM → TM such that J2 = −1, orthonormal with respect to the inner product 〈 , 〉 and such that
the

√−1-eigenbundle L < TM ⊗ C is involutive with respect to the H-twisted Courant bracket, i.e. [L, L]H ⊂ L.
• A maximal isotropic subbundle L < TM ⊗C which is involutive with respect to the H-twisted Courant bracket and such

that L ∩ L = {0}.
• A line bundle U in ∧∗T ∗M ⊗ C generated locally by a form of the form ρ = eB+√−1ωΩ such that Ω is a decomposable

complex form, B and ω are real 2-forms and Ω ∧Ω ∧ωn−k �= 0 at the points where deg(Ω) = k; together with a section
X = X + ξ ∈ Γ (TM ⊗ C) such that

dHρ = ιXρ = ιXρ + ξ ∧ ρ.
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The equivalence of these three definitions can be found in Gualtieri’s thesis [10]. Let us only note that the elements of
TM ⊗ C that annihilate the form ρ of the third definition define the subbundle L. The line bundle U is called the canonical
line bundle of the generalized complex structure.

Definition 5.2. We say that a Lie group G acts on the generalized complex manifold (M,J) if the group G acts by extended
symmetries on TM and if the generalized complex structure J is preserved by the action.

The action is Hamiltonian if there is an equivariant moment map μ : M → g∗ such that J(dμa) = Xa + ξa for all a ∈ g

and μa(m) := μ(m)(a).

The condition on the moment map could be rephrased as

ιXaρ = ιXaρ + ξa ∧ ρ = −√−1 dμa ∧ ρ

whenever ρ is a local section of the canonical line bundle.
Let us now state the main theorem of this section.

Theorem 5.3. Let G be a compact Lie group, P → Q a G-principal bundle such that the base Q is compact and is endowed with a
generalized complex structure, and a Hamiltonian action of G on the generalized complex manifold M. Then the manifold M ×G P
admits a generalized complex structure.

Proof. Let us start by choosing the splitting of Lemma 4.8 for the manifold M thus defining a G-invariant twisting form
H1 ∈ Ω3(M) and a moment map σ : M → g∗ with J(dσa) = Xa + ξa . Let H2 ∈ Ω3(Q ) be the twisting form of Q .

Following Weinstein’s construction in [23] (cf. [19, Theorem 6.10]), if we consider the cotangent vertical bundle of P

T ∗v P := P ×G T ∗G,

then every connection 1-form A of P induces an equivariant map φA : T ∗v P → T ∗ P such that the two form ωA :=
(φA)∗ωcan ∈ Ω2(T ∗v P ) is G-invariant and restricts to the canonical symplectic form of the fibers of the bundle p : T ∗v P →
Q (the fibers are isomorphic to T ∗G). Moreover, as the map μP : T ∗ P → g∗ , μP (p, v∗) = −L∗

p v∗ is Hamiltonian in the usual
sense, with L∗

p : T ∗
p P → g∗ the dual of the linear map L p : g → T p P , L pξ = p · ξ then the composition

μ = μP ◦ φA : T ∗v P → g∗

is a moment map for the G action on the fibers of T ∗v P .
If ρ is the local form defining the generalized complex structure in Q , it was shown in the proof of Theorem 2.2 of [8]

that as Q is compact there exists an ε > 0 such that the local form

ρ = e
√−1εωA ∧ p∗ρ

defines a generalized complex structure on T ∗v P with twisting form p∗H2.
The action of G on T ∗v P is also Hamiltonian with respect to the generalized complex structure defined by ρ and with

moment map με : T ∗v P → g∗ , με(·) := εμ(·); let us see this. Let g → T (T ∗v P ), a �→ Ya , be the infinitesimal action; for the
action to be Hamiltonian we need the following equation to be satisfied

ιYaρ = −√−1 dμε
a ∧ ρ,

which follows from the following set of equalities

ιYaρ = ιYa

(
e−√−1εωA ∧ p∗ρ

)
= −√−1ε(ιYaωA) ∧ e−√−1εωA ∧ p∗ρ
= −√−1ε(dμa) ∧ ρ

= −√−1 dμε
a ∧ ρ.

Notice that the equation ιYaωA = dμa is the restriction to T ∗v P of the equation

ιφA∗ Ya
ωcan = d(μP )a

which follows from the fact that μP is a moment map.
We now have that the action of G is Hamiltonian in both generalized complex manifolds T ∗v P and M . Then we can

consider the product M × T ∗v P together the generalized complex structure induced by M and T ∗v P and whose twisting
form is H1 + p∗H2. The diagonal action of G on M × T ∗v P is also Hamiltonian (see [11, Prop. 3.9]) and its moment map is
μ = σ ⊕ μ. Because 0 is a regular value of μP , and therefore of μ, then 0 is a regular value of μ. The group G acts freely
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on T ∗v P and therefore it acts freely on μ−1(0). By the reduction theorem for Hamiltonian actions on generalized complex
manifolds (see [5,11,15,22]) we have that the manifold μ−1(0)/G possesses a generalized complex structure. The manifold
μ−1(0) can be easily identified with M × P and therefore the quotient M ×G P becomes a generalized complex manifold.

The twisting form for the generalized complex structure on M ×G P (following [11, Corollary 4.7]) is the basic 3-form

H1 + p∗H2 + d
(
θaξa

) − 1

2
d
(
θbθ cιcξb

) ∈ Ω3(M × P )bas

where θa, θb . . . are the connection 1-forms for the principal G-bundle M × P → M ×G P . �
Remark 5.4. Let us finish by noting that in the case that the manifolds BGk are symplectic (for example when G = U (n) and
the BGk ’s are the complex grassmanians) then the manifolds M ×G EGk would acquire a generalized complex structure with
twisting form

H1 + d
(
θaξa

) − 1

2
d
(
θbθ cιcξb

)
.

This three form is the same one we used in Theorem 3.1 to construct the twisted Chern–Weil homomorphism.
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Appendix A

Let us consider the extended action of the circle S1 on the manifold S1 as in Example 4.11, and let us calculate the
cohomology of the uncompleted complex Ω•(S1) ⊗ R[Ω] with differential dg,δ = d − dθ Ω∧.

The complex is therefore given by even forms
∑n

i=0 f iΩ
i where f i ∈ C∞(S1), and by odd forms

∑m
j=0 g j dθΩ j with

g j dθ ∈ Ω1(S1). It follows that the closed forms are all the odd forms.
Now let us find the cohomology of the complex; for this we need to understand which odd forms are cohomologous. If

we consider the equality

dg,δ

(
f jΩ

j) = ∂ f j

∂θ
dθ Ω j − f j dθ Ω j+1 (A.1)

we can see that the following odd forms are all cohomologous:

n∑
i=0

gi dθ Ω i � g0 dθ + g1 dθΩ + · · · + gn−2 dθΩn−2 +
(

∂ gn

∂θ
+ gn−1

)
dθΩn−1

� g0 dθ + g1 dθΩ + · · · + gn−3 dθΩn−3 +
(

∂2 gn

∂θ2
+ ∂ gn−1

∂θ
+ gn−2

)
dθΩn−2

�
(

∂n gn

∂θn
+ ∂n−1 gn−1

∂θn−1
+ · · · + ∂ g1

∂θ
+ g0

)
dθΩ0.

So we can focus only on the odd forms that have only non-zero component in the coefficient of Ω0. Let us see which
odd forms in Ω1(S1) ∼= C∞(S1) ⊗RR [dθ] are exact. We have that

dg,δ

(
m∑

j=0

f ju
j

)
= g dθ

for f j and g in C∞(S1). This equation implies the following set of equalities:

df0 = g dθ,

df1 = f0 dθ,

· · ·
dfm = fm−1 dθ,

0 = fm dθ
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and if we check these equations starting from bottom to top, we see that 0 = fm = fm−1 = · · · = f0 and therefore none of
the forms of the type gdθ are exact. Then we can conclude that the cohomology of the uncompleted complex is equal to

H0(Ω•(S1) ⊗ R[Ω];dg,δ

) = 0, H1(Ω•(S1) ⊗ R[Ω];dg,δ

) ∼= Ω1(S1).
Let us see what is the H∗(B S1) = R[Ω] module structure. We just need to check what happens with the forms whose

only non-zero coefficient is the one of Ω0. Then Ω · (g dθ) = g dθΩ , and from Eq. (A.1) we have that Ω · g dθ � ∂ g
∂θ

dθ . Then,
the R[Ω] module structure on H1(Ω•(S1)⊗R[Ω];dg,δ) ∼= C∞(S1)⊗R〈dθ〉 is given by the operator ∂

∂θ
: C∞(S1) → C∞(S1),

H1(Ω•(S1) ⊗ R[Ω];dg,δ

) Ω·−→ H1(Ω•(S1) ⊗ R[Ω];dg,δ

)
,

C∞(
S1) ∂

∂θ−→ C∞(
S1).

It is easy to see now that the torsion submodule of C∞(S1) as a R[Ω]-module is infinitely generated (the functions
sin(kθ) belong to the torsion submodule). Therefore the cohomology H•(Ω•(S1) ⊗ R[Ω];dg,δ) is infinitely generated as a
R[Ω]-module and this prevents this cohomology to have a topological meaning.

Also note that the completed algebra Ω•(S1) ⊗ R[[Ω]] is isomorphic to the algebra

Ω•(S1) ⊗ R[Ω] ⊗R[Ω] R
[[Ω]].

Then one may think that one can calculate the twisted equivariant cohomology by tensoring with ⊗R[Ω]R�Ω� the coho-
mology of the uncompleted differential complex. This turns out to be false in general as one can check from the previous
example: the twisted equivariant cohomology is H•

S1 (S1,dθΩ) = R meanwhile the cohomology of the uncompleted differ-
ential complex tensored with ⊗R[Ω]R�Ω� is

H•(Ω•(S1) ⊗ R[Ω];dg,δ

)⊗R[Ω]R�Ω� ∼= Ω1(S1)⊗R[Ω]R�Ω�

which is an infinitely generated R�Ω�-module.
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