180 research outputs found

    Almost sure exponential stabilisation of stochastic systems by state-feedback control

    Get PDF
    So far, a major part of the literature on the stabilisation issues of stochastic systems has been dedicated to mean square stability. This paper develops a new class of criteria for designing a controller to stabilise a stochastic system almost surely which is unable to be stabilised in mean-square sense. The results are expressed in terms of linear matrix inequalities (LMIs) which are easy to be checked in practice by using MATLAB Toolbox. Moreover, the control structure in this paper appears not only in the drift part but also in the diusion part of the underlying stochastic system

    A stochastic differential equation SIS epidemic model

    Get PDF
    In this paper we extend the classical susceptible-infected-susceptible epidemic model from a deterministic framework to a stochastic one and formulate it as a stochastic differential equation (SDE) for the number of infectious individuals I(t)I(t). We then prove that this SDE has a unique global positive solution I(t)I(t) and establish conditions for extinction and persistence of I(t)I(t). We discuss perturbation by stochastic noise. In the case of persistence we show the existence of a stationary distribution and derive expressions for its mean and variance. The results are illustrated by computer simulations, including two examples based on real-life diseases

    Neutral stochastic functional differential equations with Levy jumps under the local Lipschitz condition

    Get PDF
    In this paper, a general neutral stochastic functional differential equations with infinite delay and Lévy jumps (NSFDEwLJs) is studied. We investigate the existence and uniqueness of solutions to NSFDEwLJs at the phase space Cg under the local Carathéodory type conditions. Meanwhile, we also give the exponential estimates and almost surely asymptotic estimates of solutions to NSFDEwLJs

    Razumikhin-type theorems on exponential stability of SDDEs containing singularly perturbed random processes

    Get PDF
    This paper concerns Razumikhin-type theorems on exponential stability of stochastic differential delay equations with Markovian switching, where the modulating Markov chain involves small parameters. The smaller the parameter is, the rapider switching the system will experience. In order to reduce the complexity, we will “replace” the original systems by limit systems with a simple structure. Under Razumikhin-type conditions, we establish theorems that if the limit systems are pth-moment exponentially stable; then, the original systems are pth-moment exponentially stable in an appropriate sense

    The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps

    Get PDF
    In this paper, we consider a class of stochastic pantograph differential equations with Lévy jumps (SPDEwLJs). By using the Burkholder-Davis-Gundy inequality and the Kunita's inequality, we prove the existence and uniqueness of solutions to SPDEwLJs whose coefficients satisfying the Lipschitz conditions and the local Lipschitz conditions. Meantime, we establish the p-th exponential estimations and almost surely asymptotic estimations of solutions to SPDEwLJs

    Approximate solutions for a class of doubly perturbed stochastic differential equations

    Get PDF
    In this paper, we study the Carathéodory approximate solution for a class of doubly perturbed stochastic differential equations (DPSDEs). Based on the Carathéodory approximation procedure, we prove that DPSDEs have a unique solution and show that the Carathéodory approximate solution converges to the solution of DPSDEs under the global Lipschitz condition. Moreover, we extend the above results to the case of DPSDEs with non-Lipschitz coefficients

    Razumikhin-type theorems on exponential stability of SDDEs containing singularly perturbed random processes

    Get PDF
    This paper concerns Razumikhin-type theorems on exponential stability of stochastic differential delay equations with Markovian switching, where the modulating Markov chain involves small parameters. The smaller the parameter is, the rapider switching the system will experience. In order to reduce the complexity, we will “replace” the original systems by limit systems with a simple structure. Under Razumikhin-type conditions, we establish theorems that if the limit systems are pth-moment exponentially stable; then, the original systems are pth-moment exponentially stable in an appropriate sense

    Razumikhin-type theorems on exponential stability of SDDEs containing singularly perturbed random processes

    Get PDF
    This paper concerns Razumikhin-type theorems on exponential stability of stochastic differential delay equations with Markovian switching, where the modulating Markov chain involves small parameters. The smaller the parameter is, the rapider switching the system will experience. In order to reduce the complexity, we will “replace” the original systems by limit systems with a simple structure. Under Razumikhin-type conditions, we establish theorems that if the limit systems are pth-moment exponentially stable; then, the original systems are pth-moment exponentially stable in an appropriate sense

    Delay dependent stability of highly nonlinear hybrid stochastic systems

    Get PDF
    There are lots of papers on the delay dependent stability criteria for differential delay equations (DDEs), stochastic differential delay equations (SDDEs) and hybrid SDDEs. A common feature of these existing criteria is that they can only be applied to delay equations where their coefficients are either linear or nonlinear but bounded by linear functions (namely, satisfy the linear growth condition). In other words, there is so far no delay-dependent stability criterion on nonlinear equations without the linear growth condition (we will refer to such equations as highly nonlinear ones). This paper is the first to establish delay dependent criteria for highly nonlinear hybrid SDDEs. It is therefore a breakthrough in the stability study of highly nonlinear hybrid SDDE

    Structured robust stability and boundedness of nonlinear hybrid delay systems

    Get PDF
    Taking different structures in different modes into account, the paper has developed a new theory on the structured robust stability and boundedness for nonlinear hybrid stochastic differential delay equations (SDDEs) without the linear growth condition. A new Lyapunov function is designed in order to deal with the effects of different structures as well as those of different parameters within the same modes. Moreover, a lot of effort is put into showing the almost sure asymptotic stability in the absence of the linear growth condition
    corecore