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Abstract

In this paper, we study the Carathéodory approximate solution for a class of doubly

perturbed stochastic differential equations (DPSDEs). Based on the Carathéodory

approximation procedure, we prove that DPSDEs have a unique solution and show

that the Carathéodory approximate solution converges to the solution of DPSDEs

under the global Lipschitz condition. Moreover, we extend the above results to the

case of DPSDEs with non-Lipschitz coefficients.

Keywords: Carathéodory approximate solution; doubly perturbed stochastic

differential equations; global Lipschitz condition; non-Lipschitz condition

1 Introduction

As the limit process from a weak polymers model, the following doubly perturbed Brow-

nian motion

xt = Bt + α sup
0≤s≤t

xs + β inf
0≤s≤t

xs, (1.1)

was discussed by Norris et al. [1], and it also arises as the scaling limit of some self-

interacting random walks (see [2]). During the past few decades, equation (1.1) has at-

tracted much interest from many scholars, for example, [3–9]. Following them, Doney et

al. [10] studied the singly perturbed Skorohod equations

xt = x0 +

∫ t

0

σ (xs)dBs +

∫ t

0

b(xs)ds + α sup
0≤s≤t

xs. (1.2)

Using the Picard iterative procedure, they showed the existence and uniqueness of the

solution to equation (1.2). Hu et al. [11] discussed the existence and uniqueness of the

solution to doubly perturbed neutral stochastic functional equations, while Luo [12] ob-

tained the existence and uniqueness of the solution to doubly perturbed jump-diffusion

processes.

In fact, the Picard iterative method is a well-known procedure for approximating the so-

lution of stochastic differential equations (SDEs). However, to obtain the Picard iterative
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sequence xn(t), one needs to compute xi(t), 0 ≤ i ≤ n – 1. And this brings us a lot of cal-

culations on stepwise iterated Ito’s integrals. In the early twentieth century, Carathéodory

[13] put forward the Carathéodory approximation scheme for ordinary differential equa-

tions. In this scheme, Carathéodory defined the approximate solution via a delay equation,

and the delay equation can be solved explicitly by successive integrations over intervals of

length 1
n
. In otherwords, theCarathéodory approximation scheme avoids calculating xi(t),

0≤ i ≤ n – 1.

Because of its advantage, this approximation procedure has received great attention, and

many people have been devoted to the study of the Carathéodory scheme for SDEs. For

example, Bell andMohammed [14] extended the Carathéodory approximation scheme to

the case of SDEs and showed the convergence of the Carathéodory approximate solution.

Mao [15, 16] considered a class of SDEs with variable delays and studied the Carathéodory

approximate solution of delay SDEs. Turo [17] discussed the Carathéodory approximate

solution of stochastic functional differential equations (SFDEs) and established the exis-

tence theorem for SFDEs. Liu [18] investigated a class of semilinear stochastic evolution

equations with time delays and proved that the Carathéodory approximate solution con-

verges to the solution of stochastic delay evolution equations.

Motivated by the abovementioned papers, we will study the Carathéodory approximate

scheme of doubly perturbed stochastic differential equations (DPSDEs)

x(t) = x(0) +

∫ t

0

f
(

s,x(s)
)

ds +

∫ t

0

g
(

s,x(s)
)

dw(s) + α sup
0≤s≤t

x(s) + β inf
0≤s≤t

x(s). (1.3)

To the best of our knowledge, so far little is known about the Carathéodory approxima-

tions for equation (1.3), and the aim of this paper is to close this gap. In this paper, we will

prove that the Carathéodory approximate solution converges to the solution under the

global Lipschitz condition. Moreover, we will replace the global Lipschitz condition by a

more general condition proposed by [19, 20] and show that equation (1.3) has a unique

solution under the non-Lipschitz condition.

This paper is organized as follows. In Section 2, we establish the existence theorem of

equation (1.3) and show that the Carathéodory approximate solution converges to the

solution of equation (1.3) under the global Lipschitz condition. While in Section 3, we

extend the existence and convergence results of Section 2 to the case of equation (1.3)

with non-Lipschitz coefficients.

2 Carathéodory approximation and global Lipschitz DPSDEs

Let (�,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions (i.e., it is increasing and right continuous, while F0 contains all P-

null sets). Let {w(t)}t≥0 be a one-dimensional Brownian motion defined on the probability

space (�,F ,P). Let L2([a,b];R) denote the family of Ft-measurable, R-valued processes

f (t) = {f (t,ω)}, t ∈ [a,b] such that
∫ b

a
|f (t)|2 dt <∞ a.s.

Consider the following doubly perturbed stochastic differential equations:

x(t) = x(0) +

∫ t

0

f
(

s,x(s)
)

ds +

∫ t

0

g
(

s,x(s)
)

dw(s) + α sup
0≤s≤t

x(s) + β inf
0≤s≤t

x(s), (2.1)
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where α,β ∈ (0, 1), the initial value x(0) = x0 ∈ R and f : [0,T]× R → R, g : [0,T]× R → R

are both Borel-measurable functions. In this paper, we assume that the initial value x0 is

independent of w and satisfies E|x0|
2 <∞.

Now, we define the sequence of the Carathéodory approximate solutions xn :

[–1,T] → R. For all n≥ 1, we define

xn(t) = x0, –1 ≤ t ≤ 0,

xn(t) = x0 +

∫ t

0

f

(

s,xn
(

s –
1

n

))

ds +

∫ t

0

g

(

s,xn
(

s –
1

n

))

dw(s) (2.2)

+ α sup
0≤s≤t

xn
(

s –
1

n

)

+ β inf
0≤s≤t

xn
(

s –
1

n

)

, t ∈ (0,T].

Note that xn(t) can be calculated step by step on the intervals [0, 1
n
), [ 1

n
, 2
n
), . . . , etc.

To obtain the main results, we give the following conditions.

Assumption 2.1 For any x, y ∈ R and t ∈ [0,T], there exists a positive constant k such that

∣

∣f (t,x) – f (t, y)
∣

∣

2
∨

∣

∣g(t,x) – g(t, y)
∣

∣

2
≤ k|x – y|2. (2.3)

Assumption 2.2 For any t ∈ [0,T], there exists a positive constant k̄ such that

∣

∣f (t, 0)
∣

∣

2
∨

∣

∣g(t, 0)
∣

∣

2
≤ k̄. (2.4)

Assumption 2.3 The coefficients satisfy |α| + |β| < 1.

Remark 2.1 Clearly, Assumptions 2.1 and 2.2 imply the linear growth condition. That is,

for any x ∈ R and t ∈ [0,T],

∣

∣f (t,x)
∣

∣

2
≤ 2

∣

∣f (t,x) – f (t, 0)
∣

∣

2
+ 2

∣

∣f (t, 0)
∣

∣

2
≤ 2k|x|2 + 2k̄ ≤ L

(

1 + |x|2
)

, (2.5)

where L = 2max(k, k̄). Similarly, we have |g(t,x)|2 ≤ L(1 + |x|2).

Now, we state our main results.

Theorem 2.1 Let Assumptions 2.1-2.3 hold. Then there exists a unique Ft-adapted solu-

tion {x(t)}t≥0 to equation (2.1).Moreover, for any T > 0,

E sup
0≤t≤T

∣

∣xn(t) – x(t)
∣

∣

2
≤ C

1

n
, (2.6)

where C is a constant independent of n.

In the sequel, to prove our main results, we need some useful lemmas.

Lemma 2.1 (Gronwall’s inequality [21]) Let u0 ≥ 0 and v(t) ≥ 0, and let u(·) be a real

continuous function on [0,T]. If

u(t) ≤ u0 +

∫ t

0

v(s)u(s)ds, for all t ∈ [0,T],
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then we have

u(t) ≤ u0e
∫ t
0 v(s)ds

for all t ∈ [0,T].

Lemma 2.2 Under Assumptions 2.1-2.3, for all n ≥ 1,

E sup
0≤t≤T

∣

∣xn(t)
∣

∣

2
≤ C1, (2.7)

where C1 is a positive constant.

Proof For any t ∈ [0,T], it follows from (2.2) that

∣

∣xn(t)
∣

∣ ≤ |x0| +

∣

∣

∣

∣

∫ t

0

f

(

s,xn
(

s –
1

n

))

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

g

(

s,xn
(

s –
1

n

))

dw(s)

∣

∣

∣

∣

+ |α|

∣

∣

∣

∣

sup
0≤s≤t

xn
(

s –
1

n

)
∣

∣

∣

∣

+ |β|

∣

∣

∣

∣

inf
0≤s≤t

xn
(

s –
1

n

)
∣

∣

∣

∣

≤ |x0| +

∣

∣

∣

∣

∫ t

0

f

(

s,xn
(

s –
1

n

))

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

g

(

s,xn
(

s –
1

n

))

dw(s)

∣

∣

∣

∣

+
(

|α| + |β|
)

sup
0≤s≤t

∣

∣

∣

∣

xn
(

s –
1

n

)
∣

∣

∣

∣

≤ |x0| +

∣

∣

∣

∣

∫ t

0

f

(

s,xn
(

s –
1

n

))

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

g

(

s,xn
(

s –
1

n

))

dw(s)

∣

∣

∣

∣

+
(

|α| + |β|
)

sup
– 1
n≤s≤0

∣

∣xn(s)
∣

∣ +
(

|α| + |β|
)

sup
0≤s≤t

∣

∣xn(s)
∣

∣.

By the basic inequality |a + b + c|2 ≤ 3(|a|2 + |b|2 + |c|2), one has

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t)
∣

∣

2

≤ 3

(

(

1 + |α| + |β|
)2
E|x0|

2 + E sup
0≤t≤t1

∣

∣

∣

∣

∫ t

0

f

(

s,xn
(

s –
1

n

))

ds

∣

∣

∣

∣

2

+ E sup
0≤t≤t1

∣

∣

∣

∣

∫ t

0

g

(

s,xn
(

s –
1

n

))

dw(s)

∣

∣

∣

∣

2)

(2.8)

for any t1 ∈ [0,T]. Using the Hölder inequality and the Burkholder-Davis-Gundy inequal-

ity, we can easily see that

E sup
0≤t≤t1

∣

∣

∣

∣

∫ t

0

f

(

s,xn
(

s –
1

n

))

ds

∣

∣

∣

∣

2

≤ TE

∫ t1

0

∣

∣

∣

∣

f

(

s,xn
(

s –
1

n

))
∣

∣

∣

∣

2

ds (2.9)

and

E sup
0≤t≤t1

∣

∣

∣

∣

∫ t

0

g

(

s,xn
(

s –
1

n

))

dw(s)

∣

∣

∣

∣

2

≤ 4E

∫ t1

0

∣

∣

∣

∣

g

(

s,xn
(

s –
1

n

))
∣

∣

∣

∣

2

ds. (2.10)
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Then, by Assumptions 2.1, 2.2 and 2.3, we have

E sup
0≤t≤t1

∣

∣xn(t)
∣

∣

2

≤
3(1 + |α| + |β|)2

(1 – |α| – |β|)2
E|x0|

2 +
3(T + 4)L

(1 – |α| – |β|)2
E

∫ t1

0

(

1 +

∣

∣

∣

∣

xn
(

s –
1

n

)
∣

∣

∣

∣

2)

ds

≤
3(1 + |α| + |β|)2 + 3(T + 4)L

(1 – |α| – |β|)2
E|x0|

2

+
3(T + 4)L

(1 – |α| – |β|)2

∫ t1

0

(

1 + E sup
0≤s≤t

∣

∣xn(s)
∣

∣

2
)

dt.

Finally, the Gronwall inequality implies that

1 + E sup
0≤t≤t1

∣

∣xn(t)
∣

∣

2
≤

3(1 + |α| + |β|)2 + 3(T + 4)L

(1 – |α| – |β|)2
E|x0|

2e
3(T+4)L

(1–|α|–|β|)2
T
.

The proof is therefore complete. �

Lemma 2.3 For all n≥ 1 and 0 ≤ s < t ≤ T ,

E
∣

∣xn(t) – xn(s)
∣

∣

2
≤ C2(t – s), (2.11)

where C2 is a positive constant.

Proof For all n≥ 1 and 0≤ s < t ≤ T , it follows from (2.2) that

xn(t) – xn(s) =

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

+

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

+ α sup
0≤σ≤t

xn
(

σ –
1

n

)

+ β inf
0≤σ≤t

xn
(

σ –
1

n

)

– α sup
0≤σ≤s

xn
(

σ –
1

n

)

– β inf
0≤σ≤s

xn
(

σ –
1

n

)

. (2.12)

Note that inf0≤σ≤t x
n(σ – 1

n
) ≤ inf0≤σ≤s x

n(σ – 1
n
), we have

∣

∣xn(t) – xn(s)
∣

∣ ≤

∣

∣

∣

∣

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

+ α

∣

∣

∣

∣

sup
0≤σ≤t

xn
(

σ –
1

n

)

– sup
0≤σ≤s

xn
(

σ –
1

n

)
∣

∣

∣

∣

. (2.13)

Next, let us consider the following two cases.
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Case I. If sup0≤σ≤t x
n(σ – 1

n
) = sup0≤σ≤s x

n(σ – 1
n
), then we get from (2.13) that

∣

∣xn(t) – xn(s)
∣

∣ ≤

∣

∣

∣

∣

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

. (2.14)

Case II. If sup0≤σ≤t x
n(σ – 1

n
) > sup0≤σ≤s x

n(σ – 1
n
), then there exists r ∈ (s, t] such that

xn(r) = sup0≤σ≤t x
n(σ – 1

n
). So we get from (2.13) that

∣

∣xn(t) – xn(s)
∣

∣ ≤

∣

∣

∣

∣

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

+ α

∣

∣

∣

∣

xn(r) – sup
0≤σ≤s

xn
(

σ –
1

n

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

+ α
∣

∣xn(r) – xn(s)
∣

∣

≤

∣

∣

∣

∣

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

+ α sup
s≤s′<t′≤t

∣

∣xn
(

t′
)

– xn
(

s′
)
∣

∣.

We therefore have

sup
s≤s′<t′≤t

∣

∣xn
(

t′
)

– xn
(

s′
)
∣

∣ ≤
1

1 – α

(

sup
s≤s′<t′≤t

∣

∣

∣

∣

∫ t′

s′
f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

+ sup
s≤s′<t′≤t

∣

∣

∣

∣

∫ t′

s′
g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

)

. (2.15)

Hence,

E sup
s≤s′<t′≤t

∣

∣xn
(

t′
)

– xn
(

s′
)
∣

∣

2

≤
2

(1 – α)2

(

E

∣

∣

∣

∣

∫ t

s

f

(

σ ,xn
(

σ –
1

n

))

dσ

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∫ t

s

g

(

σ ,xn
(

σ –
1

n

))

dw(σ )

∣

∣

∣

∣

2)

.

Then Lemma 2.2 yields

E sup
s≤s′<t′≤t

∣

∣xn
(

t′
)

– xn
(

s′
)
∣

∣

2

≤
2

(1 – α)2

(

(t – s)E

∫ t

s

∣

∣

∣

∣

f

(

σ ,xn
(

σ –
1

n

))
∣

∣

∣

∣

2

dσ

+ 4E

∫ t

s

∣

∣

∣

∣

g

(

σ ,xn
(

σ –
1

n

))
∣

∣

∣

∣

2

dσ

)
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≤
2(T + 4)L

(1 – α)2

∫ t

s

(

1 + E

∣

∣

∣

∣

xn
(

σ –
1

n

)
∣

∣

∣

∣

2)

dσ

≤ C2(t – s),

where C2 =
2(T+4)L

(1–α)2
(1 +C1). The proof is therefore complete. �

Proof of Theorem 2.1 Firstly, we will show that the sequence {xn(t)} is a Cauchy sequence

in L2([0,T];R). For any n >m ≥ 1, it follows that

∣

∣xn(t) – xm(t)
∣

∣ ≤

∣

∣

∣

∣

∫ t

0

[

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))]

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

[

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))]

dw(s)

∣

∣

∣

∣

+ |α|

∣

∣

∣

∣

sup
0≤s≤t

xn
(

s –
1

n

)

– sup
0≤s≤t

xm
(

s –
1

m

)
∣

∣

∣

∣

+ |β|

∣

∣

∣

∣

inf
0≤s≤t

xn
(

s –
1

n

)

– inf
0≤s≤t

xm
(

s –
1

m

)
∣

∣

∣

∣

.

Noting that

∣

∣

∣

∣

sup
0≤s≤t

xn
(

s –
1

n

)

– sup
0≤s≤t

xm
(

s –
1

m

)
∣

∣

∣

∣

≤ sup
0≤s≤t

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

and

∣

∣

∣

∣

inf
0≤s≤t

xn
(

s –
1

n

)

– inf
0≤s≤t

xm
(

s –
1

m

)
∣

∣

∣

∣

≤ sup
0≤s≤t

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

,

one can have

∣

∣xn(t) – xm(t)
∣

∣ ≤

∣

∣

∣

∣

∫ t

0

[

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))]

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

[

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))]

dw(s)

∣

∣

∣

∣

+
(

|α| + |β|
)

sup
0≤s≤t

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

0

[

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))]

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

[

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))]

dw(s)

∣

∣

∣

∣

+
(

|α| + |β|
)

sup
0≤s≤t

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

n

)
∣

∣

∣

∣

+
(

|α| + |β|
)

sup
0≤s≤t

∣

∣

∣

∣

xm
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

.
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By the basic inequality and Assumption 2.3, we obtain that

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤ 3

(

E sup
0≤t≤t1

∣

∣

∣

∣

∫ s

0

[

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))]

ds

∣

∣

∣

∣

2

+ E sup
0≤t≤t1

∣

∣

∣

∣

∫ s

0

[

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))]

dw(s)

∣

∣

∣

∣

2

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

. (2.16)

Then, using the Hölder inequality and the Burkholder-Davis-Gundy inequality again, we

have

E sup
0≤t≤t1

∣

∣

∣

∣

∫ t

0

[

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))]

dσ

∣

∣

∣

∣

2

≤ TE

∫ t1

0

∣

∣

∣

∣

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))
∣

∣

∣

∣

2

ds

≤ TkE

∫ t1

0

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2

ds (2.17)

and

E sup
0≤t≤t1

∣

∣

∣

∣

∫ t

0

[

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))]

dw(s)

∣

∣

∣

∣

2

≤ 4E

∫ t1

0

∣

∣

∣

∣

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))
∣

∣

∣

∣

2

ds

≤ 4kE

∫ t1

0

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2

ds. (2.18)

Substituting (2.17) and (2.18) into (2.16), one has

E sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤
3

(1 – |α| – |β|)2

(

(4 + T)kE

∫ t1

0

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2

ds

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

≤
3

(1 – |α| – |β|)2

(

2(4 + T)kE

∫ t1

0

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

n

)
∣

∣

∣

∣

2

ds

+ 2(4 + T)kE

∫ t1

0

∣

∣

∣

∣

xm
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2

ds

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

.



Mao et al. Advances in Difference Equations  ( 2018)  2018:37 Page 9 of 17

Then Lemma 2.3 yields

E sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤
3

(1 – |α| – |β|)2

(

2(4 + T)kE

∫ t1–
1
n

0

∣

∣xn(s) – xm(s)
∣

∣

2
ds

+
[

2(4 + T)kT +
(

|α| + |β|
)2]

C2

(

1

m
–
1

n

))

≤
3

(1 – |α| – |β|)2

(

2(4 + T)k

∫ t1

0

E sup
0≤s≤t

∣

∣xn(s) – xm(s)
∣

∣

2
dt

+
[

2(4 + T)kT +
(

|α| + |β|
)2]

C2

(

1

m
–
1

n

))

.

Hence,

E sup
0≤t≤T

∣

∣xn(t) – xm(t)
∣

∣

2
≤ C3

∫ T

0

[

E sup
0≤s≤t

∣

∣xn(s) – xm(s)
∣

∣

2
]

dt +C4

(

1

m
–
1

n

)

, (2.19)

where C3 =
6(4+T)k

(1–|α|–|β|)2
,C4 =

3[2(4+T)kT+(|α|+|β|)2]C2

(1–|α|–|β|)2
. By the Gronwall inequality, we have

E sup
0≤t≤T

∣

∣xn(t) – xm(t)
∣

∣

2
≤ C4e

C3T

(

1

m
–
1

n

)

, (2.20)

which implies that

E sup
0≤t≤T

∣

∣xn(t) – xm(t)
∣

∣

2
→ 0 as n,m → ∞.

This shows that the sequence {xn(t)} is a Cauchy sequence inL2([0,T];R). Denote the limit

by x(t). Letting m → ∞ in (2.20) yields

E sup
0≤t≤T

∣

∣xn(t) – x(t)
∣

∣

2
≤ C4e

C3T
1

n
. (2.21)

Then the Borel-Cantelli lemma can be used to show that xn(t) converges to x(t) almost

surely uniformly on [0,T] as n→ ∞. Taking limits on both sides of (2.2) and letting n → ∞,

we can obtain that x(t) is a solution of equation (2.1).

Now we show the uniqueness of the solution. Let x(t) and y(t) be any two solutions of

equation (2.1). We can prove using the same procedure as (2.19) that

E sup
0≤t≤T

∣

∣x(t) – y(t)
∣

∣

2
≤ C

∫ T

0

E
(

sup
0≤s≤t

∣

∣x(s) – y(s)
∣

∣

2
)

ds

for all t ∈ [0,T]. The Gronwall inequality gives that

E sup
0≤t≤T

∣

∣x(t) – y(t)
∣

∣

2
= 0,

i.e., for any t ∈ [0,T], x(t)≡ y(t) a.s. This completes the proof. �
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Remark 2.2 By (2.6), we conclude that the Carathéodory approximate solution converges

to the true solution of equation (2.1) in the mean square sense, i.e., for any T > 0,

E sup
0≤t≤T

∣

∣xn(t) – x(t)
∣

∣

2
→ 0 as n→ ∞.

In fact, the proof of the convergence of the Carathéodory approximation represents an

alternative to the procedure for establishing the existence and uniqueness of the solution

to delay DPSDEs. In other words, the Carathéodory approximation scheme is applicable

to a class of DPSDEs.

3 Non-Lipschitz DPSDEs

In this section, we will replace the global Lipschitz condition (2.3) with a more general

condition and show that the Carathéodory approximate solution still converges to the

true solution of equation (2.1).

Assumption 3.1 For any x, y ∈ R and t ∈ [0,T], there exists a function k(·) such that

∣

∣f (t,x) – f (t, y)
∣

∣ ∨
∣

∣g(t,x) – g(t, y)
∣

∣ ≤ k
(

|x – y|
)

, (3.1)

where k(u) is a concave non-decreasing continuous function such that k(0) = 0 and
∫

0+
u

k2(u)
du = ∞.

Remark 3.1 Since k(·) is concave and k(0) = 0, one can find a pair of positive constants a

and b such that

k(u) ≤ a + bu for u≥ 0.

Theorem 3.1 Let Assumptions 3.1, 2.2 and 2.3 hold. Then there exists a unique Ft-

adapted solution {x(t)}t≥0 to equation (2.1).Moreover, for any T > 0,

lim
n→∞

E sup
0≤t≤T

∣

∣xn(t) – x(t)
∣

∣

2
= 0. (3.2)

To prove Theorem 3.1, we will need the following Bihari inequality.

Lemma 3.1 (Bihari’s inequality [22]) Let k : R+ → R+ be a continuous, non-decreasing

function satisfying k(0) = 0 and
∫

0+
ds
k(s)

= +∞. Let u(·) be a Borel measurable bounded non-

negative function defined on [0,T] satisfying

u(t) ≤ u0 +

∫ t

0

v(s)k
(

u(s)
)

ds, t ∈ [0,T],

where u0 > 0 and v(·) is a non-negative integrable function on [0,T]. Then we have

u(t) ≤ G–1

(

G(u0) +

∫ t

0

v(s)ds

)

,

where G(t) =
∫ t

t0

du
k(u)

is well defined for some t0 > 0, and G–1 is the inverse function of G.
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In particular, if u0 = 0, then u(t) = 0 for all t ∈ [0,T].

Lemma 3.2 Under Assumptions 3.1, 2.2 and 2.3, for all n ≥ 1,

E sup
0≤t≤T

∣

∣xn(t)
∣

∣

2
≤ C̄1, (3.3)

where C̄1 is a positive constant.

Proof By the Hölder inequality and the Burkholder-Davis-Gundy inequality, it follows

from (2.8) that

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t)
∣

∣

2

≤ 3

(

(

1 + |α| + |β|
)2
E|x0|

2 + 2TE

∫ t1

0

∣

∣

∣

∣

f

(

s,xn
(

s –
1

n

))

– f (s, 0)

∣

∣

∣

∣

2

ds

+ 8E

∫ t1

0

∣

∣

∣

∣

g

(

s,xn
(

s –
1

n

))

– g(s, 0)

∣

∣

∣

∣

2

ds

+ 2TE

∫ t1

0

∣

∣f (s, 0)
∣

∣

2
ds + 8E

∫ t1

0

∣

∣g(s, 0)
∣

∣

2
ds

)

. (3.4)

By Assumptions 2.2 and 3.1, we have

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t)
∣

∣

2

≤ 3

(

(

1 + |α| + |β|
)2
E|x0|

2

+ 2(T + 4)E

∫ t1

0

k2
(

∣

∣

∣

∣

xn
(

s –
1

n

)
∣

∣

∣

∣

)

ds + 2(T + 4)Tk̄

)

. (3.5)

Then the Jensen inequality implies that

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t)
∣

∣

2

≤ 3

(

(

1 + |α| + |β|
)2
E|x0|

2

+ 2(T + 4)

∫ t1

0

k2
((

E

∣

∣

∣

∣

xn
(

s –
1

n

)
∣

∣

∣

∣

2) 1
2
)

ds + 2(T + 4)Tk̄

)

.

Let ρ(x) = k2(x
1
2 ), it follows that

E sup
0≤t≤t1

∣

∣xn(t)
∣

∣

2
≤

3(1 + |α| + |β|)2E|x0|
2 + 6(T + 4)Tk̄

(1 – |α| – |β|)2

+
6(T + 4)

(1 – |α| – |β|)2

∫ t1

0

ρ

(

E

∣

∣

∣

∣

xn
(

s –
1

n

)
∣

∣

∣

∣

2)

ds. (3.6)
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Since k(x)
x

and k′
+(x) are non-negative, non-increasing functions, we have that

ρ ′
+(x) = x–

1
2 k

(

x
1
2
)

k′
+(x)

is a non-negative, non-increasing function which implies that ρ is a non-negative, non-

decreasing concave function. Note that k(0) = 0, then ρ(0) = 0, and there exists a pair of

positive constants a and b such that

ρ(u)≤ a + bu for u ≥ 0.

We therefore have

E sup
0≤t≤t1

∣

∣xn(t)
∣

∣

2
≤

3(1 + |α| + |β|)2E|x0|
2 + 6(T + 4)T(a + k̄)

(1 – |α| – |β|)2

+
6(T + 4)b

(1 – |α| – |β|)2

∫ t1

0

E

∣

∣

∣

∣

xn
(

s –
1

n

)
∣

∣

∣

∣

2

ds

≤
[3(1 + |α| + |β|)2 + 6(T+4)b

n
]E|x0|

2 + 6(T + 4)T(a + k̄)

(1 – |α| – |β|)2

+
6(T + 4)b

(1 – |α| – |β|)2

∫ t1

0

E sup
0≤s≤t

∣

∣xn(s)
∣

∣

2
dt. (3.7)

Set

r(t) =
[3(1 + |α| + |β|)2 + 6(T+4)b

n
]E|x0|

2 + 6(T + 4)T(a + k̄)

(1 – |α| – |β|)2
e

6(T+4)b

(1–|α|–|β|)2
t
,

then r(·) is the solution to the following ordinary differential equation:

r(t1) =
[3(1 + |α| + |β|)2 + 6(T+4)b

n
]E|x0|

2 + 6(T + 4)T(a + k̄)

(1 – |α| – |β|)2

+
6(T + 4)b

(1 – |α| – |β|)2

∫ t1

0

r(t)dt.

By recurrence, it is easy to verify that, for each n≥ 0,

E sup
0≤t≤t1

∣

∣xn(t)
∣

∣

2
≤ r(t1).

Note that r(t1) is continuous and bounded on [0,T], one can have

E sup
0≤t≤T

∣

∣xn(t)
∣

∣

2
≤ C̄1 < +∞

for any n≥ 1. This completes the proof of Lemma 3.2. �

Lemma 3.3 For all n≥ 1 and 0 ≤ s < t ≤ T ,

E
∣

∣xn(t) – xn(s)
∣

∣

2
≤ C̄2(t – s), (3.8)

where C̄2 is a positive constant.
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The proof is similar to Lemma 2.3, we omit its proof.

Now, let us apply the above lemmas to prove Theorem 3.1.

Proof of Theorem 3.1 By the Hölder inequality and the Burkholder-Davis-Gundy inequal-

ity, it follows from (2.16) that

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤ 3

(

TE

∫ t1

0

∣

∣

∣

∣

f

(

s,xn
(

s –
1

n

))

– f

(

s,xm
(

s –
1

m

))
∣

∣

∣

∣

2

ds

+ 4E

∫ t1

0

∣

∣

∣

∣

g

(

s,xn
(

s –
1

n

))

– g

(

s,xm
(

s –
1

m

))
∣

∣

∣

∣

2

ds

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

.

By Assumption 3.1 and the Jensen inequality, we have

(

1 – |α| – |β|
)2
E sup

0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤ 3

(

(T + 4)E

∫ t1

0

k2
(

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

)

ds

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

≤ 3

(

(T + 4)

∫ t1

0

k2
((

E

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2) 1
2
)

ds

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)∣

∣

∣

∣

2)

. (3.9)

Similar to (3.6), one obtains

E sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤
3

(1 – |α| – |β|)2

(

(T + 4)

∫ t1

0

ρ

(

E

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2)

ds

+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

. (3.10)

Since ρ(·) is concave, we have ρ(a + b) ≤ ρ(a) + ρ(b). Then Lemma 3.3 yields

E sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤
3

(1 – |α| – |β|)2

(

2(T + 4)

∫ t1

0

ρ

(

E

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

n

)
∣

∣

∣

∣

2)

ds

+ 2(T + 4)

∫ t1

0

ρ

(

E

∣

∣

∣

∣

xm
(

s –
1

n

)

– xm
(

s –
1

m

)
∣

∣

∣

∣

2)

ds
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+
(

|α| + |β|
)2
E sup

0≤t≤t1

∣

∣

∣

∣

xm
(

t –
1

n

)

– xm
(

t –
1

m

)
∣

∣

∣

∣

2)

≤
6(T + 4)

(1 – |α| – |β|)2

(∫ t1

0

ρ

(

E

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

n

)
∣

∣

∣

∣

2)

ds

+

∫ t1

0

ρ

(

C̄2

(

1

m
–
1

n

))

ds

)

+
3(|α| + |β|)2

(1 – |α| – |β|)2
C̄2

(

1

m
–
1

n

)

, (3.11)

where

∫ t1

0

ρ

(

E

∣

∣

∣

∣

xn
(

s –
1

n

)

– xm
(

s –
1

n

)
∣

∣

∣

∣

2)

ds

≤

∫ t1

0

ρ

(

E sup
0≤σ≤s

∣

∣

∣

∣

xn
(

σ –
1

n

)

– xm
(

σ –
1

n

)
∣

∣

∣

∣

2)

ds

≤

∫ t1

0

ρ

(

E sup
– 1
n≤v≤s– 1

n

∣

∣xn(v) – xm(v)
∣

∣

2
)

ds

≤

∫ t1

0

ρ

(

E sup
– 1
n≤v≤0

∣

∣xn(v) – xm(v)
∣

∣

2
+ E sup

0≤v≤s

∣

∣xn(v) – xm(v)
∣

∣

2
)

ds

≤ ρ
(

2E‖ξ‖2
)

T +

∫ t1

0

ρ

(

E sup
0≤s≤t

∣

∣xn(s) – xm(s)
∣

∣

2
)

dt. (3.12)

Inserting (3.12) into (3.11), we obtain that

E sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2

≤
6(T + 4)

(1 – |α| – |β|)2

∫ t1

0

ρ

(

E sup
0≤s≤t

∣

∣xn(s) – xm(s)
∣

∣

2
)

dt

+
3

(1 – |α| – |β|)2
C(m,n), (3.13)

where

C(m,n) = 2(T + 4)Tρ
(

2E‖ξ‖2
)

+ 2(T + 4)TC̄2ρ

(

1

m
–
1

n

)

+
(

|α| + |β|
)2
C̄2

(

1

m
–
1

n

)

.

Then the Bihari inequality gives that

E sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2
≤ G–1

(

G

(

3C(m,n)

(1 – |α| – |β|)2

)

+
6(T + 4)T

(1 – |α| – |β|)2

)

,

where G(t) =
∫ t

1
ds

ρ(s)
. Obviously, G is a strictly increasing function, then G has an inverse

function which is strictly increasing, and G–1(–∞) = 0. Note that when m,n → ∞, then
3C(m,n)

(1–|α|–|β|)2
→ 0. Recalling

∫

0+
ds

ρ(s)
=

∫

0+
s

k2(s)
ds = ∞, we have

G

(

3C(m,n)

(1 – |α| – |β|)2

)

→ –∞
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and

G–1

[

G

(

3C(m,n)

(1 – |α| – |β|)2

)

+
6(T + 4)T

(1 – |α| – |β|)2

]

→ 0.

We therefore have

lim sup
n,m→∞

E
(

sup
0≤t≤t1

∣

∣xn(t) – xm(t)
∣

∣

2
)

≤ lim sup
n,m→∞

G–1

[

G

(

3C(m,n)

(1 – |α| – |β|)2

)

+
6(T + 4)T

(1 – |α| – |β|)2

]

= 0, (3.14)

which implies that {xn(t)}n≥1 is a Cauchy sequence. Denote the limit by x(t). Lettingm →

∞ in (3.14) yields

lim
n→∞

E sup
0≤t≤T

∣

∣xn(t) – x(t)
∣

∣

2
= 0.

Similar to (3.13), (3.14), we can show that x(t) is a unique solution of equation (2.1) under

non-Lipschitz conditions. Then the proof is completed. �

Remark 3.2 To see the generality of our results, let us give a few examples of the function

k(·). Let δ ∈ (0, 1) be sufficiently small, define

k1(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, u = 0,

u
√

log(u–1), u ∈ (0, δ],

δ
√

log (δ–1), u ∈ [δ, +∞],

and

k2(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, u = 0,

u
√

log(u–1) log log(u–1), u ∈ (0, δ],

δ
√

log (δ–1) log log (δ–1), u ∈ [δ, +∞].

They are all concave non-decreasing functions satisfying
∫

0+
u

k2i (u)
du = ∞, i = 1, 2.

Remark 3.3 In particular, if we let k(u) = ku, u ≥ 0, we see that the Lipschitz condition

(2.3) is a special case of our proposed condition (3.1). In other words, we obtain a more

general result than Theorem 2.1.

Remark 3.4 In fact, our theories developed can be applied to study doubly perturbed

stochastic differential equations with jumps (DPSDEwJs) and doubly perturbed stochas-

tic differential equations with Markovian switching (DPSDEwMS) respectively. If α =

β = 0, then DPSDEwJs and DPSDEwMS will become SDEs with jumps and SDEs with

Markovian switching which were investigated by [23–34]. Similarly, we can also give the

Carathéodory approximate solution and show that the Carathéodory approximate solu-

tion converges to the solution of SDEs with jumps and SDEs with Markovian switching

under our assumptions.
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