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a b s t r a c t

There are lots of papers on the delay dependent stability criteria for differential delay equations (DDEs),

stochastic differential delay equations (SDDEs) and hybrid SDDEs. A common feature of these existing

criteria is that they can only be applied to delay equations where their coefficients are either linear or

nonlinear but bounded by linear functions (namely, satisfy the linear growth condition). In other words,

there is so far no delay-dependent stability criterion on nonlinear equations without the linear growth

condition (we will refer to such equations as highly nonlinear ones). This paper is the first to establish

delay dependent criteria for highly nonlinear hybrid SDDEs. It is therefore a breakthrough in the stability

study of highly nonlinear hybrid SDDEs.

© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Time-delay is encountered in many real-world systems in
science and industry. Differential delay equations (DDEs) (or more
generally, functional differential equations) have been developed
to model such time-delay systems. Time-delay often causes
undesirable system transient response, or even instability. Stability
of DDEs has hence been studied intensively formore than 50 years.
The stability criteria are often classified into two categories: delay-
dependent and delay-independent stability criteria. The delay-
dependent stability criteria take into account the size of delays and
hence are generally less conservative than the delay-independent
ones which work for any size of delays. There is a very rich
literature in this area (see, e.g., Fridman, 2014; Hale & Lunel, 1993;
Kolmanovskii & Nosov, 1986).

In 1980’s, stochastic differential delay equations (SDDEs) were
developed in order to model real-world systems which contain
someuncertainties or are subject to external noises (see, e.g., Ladde
& Lakshmikantham, 1980; Mao, 1991, 1994, 2007; Mohammed,

✩ The material in this paper was not presented at any conference. This paper was

recommended for publication in revised form by Associate Editor Emilia Fridman

under the direction of Editor Ian R. Petersen.

E-mail addresses:wyfei@ahpu.edu.cn (W. Fei), Ljhu@dhu.edu.cn (L. Hu),

x.mao@strath.ac.uk (X. Mao), smx1011@163.com (M. Shen).

1984). Since then, stability has been one of the most important

topics in the study of SDDEs. As the literature in this area is huge

and lots of papers are of open-access, there is no need to cite any

reference here.

In 1990’s, hybrid SDDEs (also known as SDDEs with Markovian

switching) were used to model real-world systems where they

may experience abrupt changes in their structure and parameters

in addition to time delays and uncertainties. One of the important

issues in the study of hybrid SDDEs is the automatic control, with

consequent emphasis being placed on the analysis of stability.

Once again, the delay-dependent stability criteria have been

established by many authors (see, e.g., Mao, Lam, & Huang, 2008;

Mao & Yuan, 2006; Xu, Lam, & Mao, 2007; Yue & Han, 2005).

To our best knowledge, a common feature of the existing delay-

dependent stability criteria is that they can only be applied to

the hybrid SDDEs where their coefficients are either linear or

nonlinear but bounded by linear functions (namely, satisfy the

linear growth condition). In other words, there is so far no delay-

dependent stability criterion on nonlinear hybrid SDDEs without

the linear growth condition (we will refer to such equations as

highly nonlinear ones). For example, consider the scalar highly

nonlinear hybrid SDDE

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt

+ g(x(t), x(t − δ(t)), r(t), t)dB(t). (1.1)
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Here x(t) ∈ R is the state, δ : R → [0, τ ] stands for variable time
delay, B(t) is a scalar Brownian motion, r(t) is a Markov chain on
the state space S = {1, 2} with its generator

Γ =


−1 1
8 −8



, (1.2)

and we will refer to r(t) as the mode of the system. Moreover, the
coefficients f and g are defined by

f (x, y, 1, t) = −y − 3x3, f (x, y, 2, t) = y − 2x3,

g(x, y, 1, t) = y2, g(x, y, 2, t) = 0.5y2. (1.3)

If there is no time-delay, namely δ(t) = 0, then this hybrid
SDDE becomes hybrid SDE and the computer simulation shows
it is asymptotically stable; while if the time-delay is large, say
δ(t) = 2, the computer simulation shows that the hybrid SDDE
is unstable (but we here omit simulation outputs due to the page
limit). In other words, whether the hybrid SDDE is stable or not
depends onhowsmall or large the time-delay is. On the other hand,
both drift and diffusion coefficients of the hybrid SDDE are highly
nonlinear. However, there is no delay dependent criterion which
can be applied to the SDDE to derive a sufficient bound on the
time-delay δ(t) for the SDDE to be stable.

We should point out that there are already some papers on the
asymptotic stability of highly nonlinear hybrid SDDEs (see, e.g., Hu,
Mao, & Shen, 2013; Hu, Mao, & Zhang, 2013; Liu, 2012; Luo, Mao,
& Shen, 2011) but these existing results are all delay independent.
Our paper is the first to establish delay dependent criteria for
highly nonlinear hybrid SDDEs. It is therefore a breakthrough in
the stability study of highly nonlinear hybrid SDDEs. Let us begin
to establish our new theory.

2. Notation and standing hypotheses

Throughout this paper, unless otherwise specified, we use the
following notation. If A is a vector or matrix, its transpose is
denoted by AT . If x ∈ Rn, then |x| is its Euclidean norm. If A

is a matrix, we let |A| =


trace(ATA) be its trace norm. Let
R+ = [0, ∞). For h > 0, denote by C([−h, 0]; Rn) the family
of continuous functions ϕ from [−h, 0] → Rn with the norm
∥ϕ∥ = sup−h≤u≤0 |ϕ(u)|. If both a, b are real numbers, then a∧b =
min{a, b} and a ∨ b = max{a, b}. If A is a subset of Ω , denote
by IA its indicator function; that is IA(ω) = 1 if ω ∈ A and 0
otherwise. Let (Ω, F , {Ft}t≥0, P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is
increasing and right continuous while F0 contains all P-null sets).
Let B(t) = (B1(t), . . . , Bm(t))T be an m-dimensional Brownian
motion defined on the probability space. Let r(t), t ≥ 0, be a
right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, . . . ,N} with generator
Γ = (γij)N×N , Here γij ≥ 0 is the transition rate from i to j if
i ≠ j while γii = −



j≠i γij. We assume that the Markov chain

r(·) is independent of the Brownian motion B(·). Let τ > 0 and
δ̄ ∈ [0, 1) be two constants. Let δ be a differentiable function from
R+ → [0, τ ] such that δ̇(t) := dδ(t)/dt ≤ δ̄ for all t ≥ 0. Let
f : Rn × Rn × S × R+ → Rn and g : Rn × Rn × S × R+ → Rn×m

be Borel measurable functions. Consider an n-dimensional hybrid
SDDE

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt

+ g(x(t), x(t − δ(t)), r(t), t)dB(t) (2.1)

on t ≥ 0 with initial data

x̃0 = ξ ∈ C([−τ , 0]; Rn) and r(0) = i0 ∈ S, (2.2)

where x̃0 := {x(t) : −τ ≤ t ≤ 0}. The classical conditions
for the existence and uniqueness of the global solution are the

local Lipschitz condition and the linear growth condition (see, e.g.,
Mao, 1991, 1994, 2007; Mao & Yuan, 2006). In this paper, we need
the local Lipschitz condition. However, we will consider highly
nonlinear SDDEswhich, in general, do not satisfy the linear growth
condition in this paper. We therefore impose the polynomial
growth condition, instead of the linear growth condition. Let us
state these conditions as an assumption for the use of this paper.

Assumption 2.1. Assume that for any b > 0, there exists a positive
constant Kb such that

|f (x, y, i, t) − f (x̄, ȳ, i, t)| ∨ |g(x, y, i, t) − g(x̄, ȳ, i, t)|
≤ Kb(|x − x̄| + |y − ȳ|) (2.3)

for all x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ b and all
(i, t) ∈ S × R+. Assume moreover that there exist three constants
K > 0, q1 ≥ 1 and q2 ≥ 1 such that

|f (x, y, i, t)| ≤ K(1 + |x|q1 + |y|q1),
|g(x, y, i, t)| ≤ K(1 + |x|q2 + |y|q2) (2.4)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

Of course, if q1 = q2 = 1 then condition (2.4) is the familiar
linear growth condition. However, we emphasize once again that
we are here interested in highly nonlinear SDDEs which have
either q1 > 1 or q2 > 1. We will refer condition (2.4) as the
polynomial growth condition. It is known that Assumption 2.1
only guarantees that the SDDE (2.1) with the initial data (2.2) has
a unique maximal solution, which may explode to infinity at a
finite time. To avoid such a possible explosion, we need to impose
an additional condition in terms of Lyapunov functions. For this
purpose, we need more notation.

Let C2,1(Rn × S × R+; R+) denote the family of non-negative
functions U(x, i, t) defined on (x, i, t) ∈ Rn × S × R+ which
are continuously twice differentiable in x and once in t . For such
a function U , we will let Ut = ∂U

∂t
, Ux = ( ∂U

∂x1
, . . . , ∂U

∂xn
) and

Uxx = ( ∂2U
∂xk∂xl

)n×n. Let C(Rn × [−τ , ∞); R+) denote the family of

all continuous functions from Rn × [−τ , ∞) to R+. We can now
state another assumption.

Assumption 2.2. Assume that there exists a pair of functions Ū ∈
C2,1(Rn × S × R+; R+) and G ∈ C(Rn × [−τ , ∞); R+), as well as
positive numbers c1, c2, c3 and q ≥ 2(q1 ∨q2) (where q1 and q2 are
the same as in Assumption 2.1), such that

c3 < c2(1 − δ̄); (2.5)

|x|q ≤ Ū(x, i, t) ≤ G(x, t) (2.6)

for (x, i, t) ∈ Rn × S × R+; and

LŪ(x, y, i, t) := Ūt(x, i, t) + Ūx(x, i, t)f (x, y, i, t)

+ 1

2
trace[gT (x, y, i, t)Ūxx(x, i, t)g(x, y, i, t)]

+
N



j=1

γijŪ(x, j, t)

≤ c1 − c2G(x, t) + c3G(y, t − δ(t)) (2.7)

for (x, y, i, t) ∈ Rn × Rn × S × R+.

We now cite a theorem fromHu,Mao, and Shen (2013, Theorem
4.3), which shows the unique global solution of the SDDE (2.1) and
its qth moment property under the above assumptions.

Theorem 2.3. Under Assumptions 2.1 and 2.2, the SDDE (2.1) with
the initial data (2.2) has the unique global solution x(t) on t ≥ −τ
and the solution has the property that sup−τ≤t<∞ E|x(t)|q < ∞.
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Theorem2.3 implies a number of nice properties of the solution.
For example, for any t ≥ 0, x(t) is in Lp for any p ∈ (0, q] while
both f (x(t), x(t − δ(t)), r(t), t) and g(x(t), x(t − δ(t)), r(t), t)
are in L2. These properties will play their fundamental roles when
we discuss the asymptotic stability of the SDDE (2.1) in the next
section.

3. Delay-dependent asymptotic stability

In this section, we will use the method of Lyapunov functionals
to investigate the delay-dependent asymptotic stability. To define
a Lyapunov functional for the use of this paper, we define two
segments x̂t := {x(t + s) : −2τ ≤ s ≤ 0} and r̂t := {r(t + s) :
−2τ ≤ s ≤ 0} for t ≥ 0. For x̂t and r̂t to be well defined for
0 ≤ t < 2τ , we set x(s) = ξ(−τ) for s ∈ [−2τ , −τ) and r(s) = r0
for s ∈ [−2τ , 0). The Lyapunov functional used in this paper will
be of the form

V (x̂t , r̂t , t) = U(x(t), r(t), t)

+ θ

 0

−τ

 t

t+s



τ |f (x(v), x(v − δ(v)), r(v), v)|2

+ |g(x(v), x(v − δ(v)), r(v), v)|2


dvds (3.1)

for t ≥ 0, where U ∈ C2,1(Rn × S × R+; R+) and θ is a positive
number to be determined later while we set

f (x, y, i, s) = f (x, y, i, 0), g(x, y, i, s) = g(x, y, i, 0)

for (x, y, i, s) ∈ Rn × Rn × S × [−2τ , 0).

Lemma 3.1. With the notation above, V (x̂t , r̂t , t) is an Itô process on
t ≥ 0 with its Itô differential

dV (x̂t , r̂t , t) = LV (x̂t , r̂t , t)dt + dM(t), (3.2)

where M(t) is a continuous local martingale with M(0) = 0 (the
explicit form of M(t) is of no use in this paper so we do not state it
here but it can be found in Mao & Yuan, 2006, Theorem 1.45 on page
48), and

LV (x̂t , r̂t , t) = Ux(x(t), r(t), t)

× [f (x(t), x(t − δ(t)), r(t), t) − f (x(t), x(t), r(t), t)]
+ LU(x(t), x(t − δ(t)), r(t), t)

+ θτ


τ |f (x(t), x(t − δ(t)), r(t), t)|2

+ |g(x(t), x(t − δ(t)), r(t), t)|2


− θ

 t

t−τ



τ |f (x(v), x(v − δ(v)), r(v), v)|2

+ |g(x(v), x(v − δ(v)), r(v), v)|2


dv, (3.3)

in which LU : Rn × Rn × S × R+ → R is defined by

LU(x, y, i, t) = Ut(x, i, t) + Ux(x, i, t)f (x, x, i, t)

+ 1

2
trace[gT (x, y, i, t)Uxx(x, i, t)g(x, y, i, t)]

+
N



j=1

γijU(x, j, t). (3.4)

This lemma can be proved easily by the generalized Itô formula
(see, e.g., Mao, 2002; Mao & Yuan, 2006) and the fundamental
theory of calculus but the details are omitted due to the page limit.
To study the delay-dependent asymptotic stability of the SDDE
(2.1), we need to impose a couple of new assumptions.

Assumption 3.2. Assume that there are functions U ∈ C2,1(Rn ×
S ×R+; R+), U1,U2 ∈ C(Rn ×[−τ , ∞); R+), and positive numbers
αk (k = 1, 2, 3, 4) and βj (j = 1, 2, 3) such that

α2 < α1(1 − δ̄), α4 ≤ α3(1 − δ̄), (3.5)

and

LU(x, y, i, t) + β1|Ux(x, i, t)|2

+ β2|f (x, y, i, t)|2 + β3|g(x, y, i, t)|2
≤ −α1U1(x, t) + α2U1(y, t − δ(t))

− α3U2(x, t) + α4U2(y, t − δ(t)), (3.6)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

Assumption 3.3. Assume that there exists a positive number β4

such that

|f (x, x, i, t) − f (x, y, i, t)| ≤ β4|x − y| (3.7)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

Theorem 3.4. Let Assumptions 2.1, 2.2, 3.2 and 3.3 hold. Assume also
that

τ ≤
√
2β1β2

β4

∧ 2β1β3

β2
4

. (3.8)

Then for any given initial data (2.2), the solution of the SDDE (2.1) has
the properties that

 ∞

0

EU1(x(t), t)dt < ∞ (3.9)

and

sup
0≤t<∞

EU(x(t), r(t), t) < ∞. (3.10)

Proof. Fix the initial data ξ ∈ C([−τ , 0]; Rn) and r0 ∈ S arbitrarily.
Let k0 > 0 be a sufficiently large integer such that ∥ξ∥ < k0. For
each integer k ≥ k0, define the stopping time

σk = inf{t ≥ 0 : |x(t)| ≥ k},
where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes
the empty set). It is easy to see that σk is increasing as k → ∞
and, by Theorem 2.3, limk→∞ σk = ∞ a.s. By the generalized Itô
formula, we obtain from Lemma 3.1 that

EV (x̂t∧σk , r̂t∧σk , t ∧ σk)

= V (x̂0, r̂0, 0) + E

 t∧σk

0

LV (x̂s, r̂s, s)ds (3.11)

for any t ≥ 0 and k ≥ k0.
We now let θ = β2

4/(2β1). (Please recall that θ is the
free parameter in the definition of the Lyapunov functional.)
By Assumption 3.2 and condition (3.8), it is easy to show from
Lemma 3.1 that

LV (x̂s, r̂s, s)

≤ −α1U1(x(s), s) + α2U1(x(s − δ(s)), s − δ(s))

− α3U2(x(s), s) + α4U2(x(s − δ(s)), s − δ(s))

+ β2
4

4β1

|x(s) − x(s − δ(s))|2

− β2
4

2β1

 s

s−τ



τ |f (x(v), x(v − δ(v)), r(v), v)|2

+ |g(x(v), x(v − δ(v)), r(v), v)|2


dv.
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Substituting this into (3.11) implies

EV (x̂t∧σk , r̂t∧σk , t ∧ σk)

≤ V (x̂0, r̂0, 0) + J1 + J2 + J3 − J4, (3.12)

where

J1 = E

 t∧σk

0



−α1U1(x(s), s)

+ α2U1(x(s − δ(s)), s − δ(s))


ds,

J2 = E

 t∧σk

0



−α3U2(x(s), s)

+ α4U2(x(s − δ(s)), s − δ(s))


ds,

J3 = β2
4

4β1

E

 t∧σk

0

|x(s) − x(s − δ(s))|2ds,

J4 = β2
4

2β1

E

 t∧σk

0



 s

s−τ



τ |f (x(v), x(v − δ(v)), r(v), v)|2

+ |g(x(v), x(v − δ(v)), r(v), v)|2


dv


ds.

It is straightforward to show that

J1 ≤ α2

1 − δ̄

 0

−τ

U1(ξ(v), v)dv

− ᾱE

 t∧σk

0

U1(x(s), s)ds, (3.13)

and

J2 ≤ α4

1 − δ̄

 0

−τ

U2(ξ(v), v)dv, (3.14)

where ᾱ = α1 − α2/(1 − δ̄) > 0 by condition (3.5). Substituting
these two inequalities into (3.12) yields

ᾱE

 t∧σk

0

U1(x(s), s)ds ≤ C1 + J3 − J4, (3.15)

where C1 is a positive constant dependent on the initial data.
Applying the well-known Fatou lemma (see, e.g., Loeve, 1955) and
recalling the paragraph below Theorem 2.3, we can let k → ∞ in
(3.15) to obtain

ᾱE

 t

0

U1(x(s), s)ds ≤ C1 + J̄3 − J̄4, (3.16)

where

J̄3 = β2
4

4β1

E

 t

0

|x(s) − x(s − δ(s))|2ds,

J̄4 = β2
4

2β1

E

 t

0



 s

s−τ



τ |f (x(v), x(v − δ(v)), r(v), v)|2

+ |g(x(v), x(v − δ(v)), r(v), v)|2


dv


ds.

But, by the well-known Fubini theorem (see, e.g., Loeve, 1955),

J̄3 = β2
4

4β1

 t

0

E|x(s) − x(s − δ(s))|2ds.

For t ∈ [0, τ ], we clearly have

J̄3 ≤ τβ2
4

β1



sup
−τ≤v≤τ

E|x(v)|2


=: C2,

where, as usual, =: means ‘denoted by’. For t > τ , we have

J̄3 ≤ C2 + β2
4

4β1

 t

τ

E|x(s) − x(s − δ(s))|2ds.

But, it follows from the SDDE (2.1) that, for s ≥ τ ,

E|x(s) − x(s − δ(s))|2

≤ 2E

 s

s−τ



τ |f (x(v), x(v − δ(v)), r(v), v)|2

+ |g(x(v), x(v − δ(v)), r(v), v)|2


dv.

We hence easily obtain that J̄3 = C2 + J̄4 for t > τ . In other words,
we always have

J̄3 ≤ C2 + J̄4, ∀t ≥ 0. (3.17)

Substituting this into (3.16) yields

ᾱE

 t

0

U1(x(s), s)ds ≤ C1 + C2.

Letting t → ∞ gives

E

 ∞

0

U1(x(s), s)ds ≤ (C1 + C2)/ᾱ.

This, along with the Fubini theorem, implies the assertion (3.9).
Similarly, we see from (3.12) that

EU(x(t ∧ σk), r(t ∧ σk), t ∧ σk) ≤ C1 + J3 − J4. (3.18)

Letting k → ∞ and using (3.17), we get

EU(x(t), r(t), t) ≤ C1 + C2,

which implies the other assertion (3.10) as the above inequality

holds for any t ≥ 0. The proof is therefore complete. �

The assertions of Theorem 3.4 are in terms of the Lyapunov

functionsU andU1. If we have a slightlymore information on these

Lyapunov functions, we can get some familiar stability results,

e.g., H∞-stability, as described in the following corollary.

Corollary 3.5. Let the conditions of Theorem 3.4 hold. If there also
exist positive constants c and p such that

c|x|p ≤ U1(x, t), ∀(x, t) ∈ Rn × R+, (3.19)

then for any given initial data (2.2), the solution of the SDDE (2.1) sat-
isfies

 ∞

0

E|x(t)|pdt < ∞. (3.20)

That is, the SDDE (2.1) is H∞-stable in Lp.

This corollary follows from Theorem 3.4 obviously. In general, it

does not follow from (3.20) that limt→∞ E(|x(t)|p) = 0. However,

this is true provided E|x(t)|p is uniformly continuous in t . We

can achieve this with an additional condition on the parameters

p, q1, q2 and q as described in the following theorem.

Theorem 3.6. Let the conditions of Corollary 3.5 hold. If, moreover,

p ≥ 2 and (p + q1 − 1) ∨ (p + 2q2 − 2) ≤ q,

(please recall that q1, q2 and q were specified in Assumptions 2.1

and 2.2, respectively), then the solution of the SDDE (2.1) satisfies

that limt→∞ E|x(t)|p = 0 for any initial data (2.2). That is, the

SDDE (2.1) is asymptotically stable in Lp.
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Proof. Again, fix the initial data (2.2) arbitrarily. For any 0 ≤ t1 <

t2 < ∞, by the Itô formula, we have

E|x(t2)|p − E|x(t1)|p

= E

 t2

t1



p|x(t)|p−2xT (t)f (x(t), x(t − δ(t)), r(t), t)

+ p

2
|x(t)|p−2|g(x(t), x(t − δ(t)), r(t), t)|2

+ p(p − 2)

2
|x(t)|p−4|xT (t)g(x(t), x(t − δ(t)), r(t), t)|2



dt.

This implies


E|x(t2)|p − E|x(t1)|p




≤ E

 t2

t1



p|x(t)|p−1|f (x(t), x(t − δ(t)), r(t), t)|

+ p(p − 1)

2
|x(t)|p−2|g(x(t), x(t − δ(t)), r(t), t)|2



dt.

By the polynomial growth condition (2.4), we then have


E|x(t2)|p − E|x(t1)|p




≤ E

 t2

t1



pK |x(t)|p−1


1 + |x(t)|q1 + |x(t − δ(t))|q1


+ 3p(p − 1)K 2

2
|x(t)|p−2



1 + |x(t)|2q2 + |x(t − δ(t))|2q2




dt.

Using the inequalities

|x(t)|p−1|x(t − δ(t))|q1 ≤ |x(t)|p+q1−1 + |x(t − δ(t))|p+q1−1,

|x(t)|p−1 ≤ 1 + |x(t)|q

etc., we further obtain

|E|x(t2)|2 − E|x(t1)|2| ≤ C3(t2 − t1),

where

C3 = 4



pK + 3p(p − 1)K 2

2



1 + sup
−τ≤t<∞

E|x(t)|q


< ∞.

That is, E|x(t)|p is uniformly continuous in t on R+. It then follows

from (3.20) that limt→∞ E|x(t)|p = 0 as required. �

4. An example

In this section we will only be able to discuss an example to

illustrate our theory due to the page limit. Although our example

is a scalar hybrid SDDE, it will illustrate our theory very well.

Example 4.1. Let us return to the SDDE (1.1) with the coefficients

defined by (1.3). Recall that r(t) is a Markov chain with its state

space S = {1, 2} and the generator Γ given by (1.2). Let us now

consider the general variable delay δ(t) that satisfies the conditions

imposed in Section 2 and assume δ̄ = 0.2. Clearly, the coefficients

defined by (1.3) satisfy Assumption 2.1 with q1 = 3 and q2 = 2. To

verify Assumption 2.2, we set q = 6 and define Ū(x, i, t) = |x|6 for
(x, i, t) ∈ R × S × R+. It is easy to show that

LŪ(x, y, 1, t) = 6x5(−y − 3x3) + 15x4y4

≤ 5x6 + y6 − 10.5x8 + 7.5y8 (4.1)

and

LŪ(x, y, 2, t) = 6x5(y − 2x3) + (15/4)x4y4

≤ 5x6 + y6 − (12 − 15/32)x8 + 7.5y8. (4.2)

We hence always have

LŪ(x, y, i, t) ≤ 5x6 + y6 − 10.5x8 + 7.5y8

≤ c1 − 10(1 + x8) + 8(1 + y8) (4.3)

for (x, y, i, t) ∈ R × R × S × R+, where

c1 = sup
x,y∈R



2 + 5x6 + y6 − 0.5(x8 + y8)


< ∞.

Therefore, Assumption 2.2 is satisfied with G(x, t) = 1 + x8,
c2 = 10 and c3 = 8. By Theorem 2.3, we can first conclude that
the SDDE (1.1) with the initial data (2.2) (replace Rn there by R of
course) has the unique global solution x(t) on t ≥ −τ and the
solution has the property that sup−τ≤t<∞ E|x(t)|6 < ∞.

To apply our theorems established in the previous section, we
need to verify assumptions imposed there. Let us do so one by one.
To verify Assumption 3.2, we define

U(x, i, t) =


x2 + x4 if i = 1,

2x2 + 3x4 if i = 2
(4.4)

for (x, i, t) ∈ R × S × R+. By definition (3.4), it is straightforward
to show

LU(x, y, i, t)

≤


−x2 − 8x4 + y4 − 10x6 + 4y6 if i = 1,

−4x2 − 12x4 + 0.5y4 − 22x6 + 4y6 if i = 2.
(4.5)

Moreover,

|Ux(x, i, t)|2 =


4x2 + 16x4 + 16x6 if i = 1,

16x2 + 96x4 + 144x6 if i = 2; (4.6)

|f (x, y, i, t)|2 =


|y + 3x3|2 ≤ 2y2 + 18x6 if i = 1,

|y − 2x3|2 ≤ 2y2 + 8x6 if i = 2; (4.7)

|g(x, y, i, t)|2 =


y4 if i = 1,

0.25y4 if i = 2.
(4.8)

Setting

β1 = 0.1, β2 = 0.2, β3 = 1, (4.9)

and using (4.5)–(4.8), we can then show that

LU(x, y, i, t) + β1|Ux(x, i, t)|2

+ β2|f (x, y, i, t)|2 + β3|g(x, y, i, t)|2

≤











−0.6x2 + 0.4y2 − 6.4x4 + 2y4 − 4.8x6 + 4y6

if i = 1,

−2.4x2 + 0.4y2 − 2.4x4 + 0.75y4 − 6x6 + 4y6

if i = 2.

(4.10)

This implies

LU(x, y, i, t) + β1|Ux(x, i, t)|2

+ β2|f (x, y, i, t)|2 + β3|g(x, y, i, t)|2

≤ −0.6x2 + 0.4y2 − 2.4x4 + 2y4 − 4.8x6 + 4y6.

≤ −4.8(0.1x2 + x6) + 4(0.1y2 + y6) − 2.4x4 + 2y4. (4.11)

Letting

U1(x, t) = 0.1x2 + x6, U2(x, t) = x4,

α1 = 4.8, α2 = 4, α3 = 2.4, α4 = 2, (4.12)

we get condition (3.6). Moreover, it is easy to check that condition
(3.5) holds as well. In other words, Assumption 3.2 is satisfied.
Noting that

|f (x, x, t, i) − f (x, y, t, i)| ≤ |x − y|, (4.13)



170 W. Fei et al. / Automatica 82 (2017) 165–170

we see that Assumption 3.3 is satisfied with β4 = 1. Furthermore,
condition (3.8) becomes

τ ≤ 0.2. (4.14)

By Theorem 3.4, we can therefore conclude that the solution of the
SDDE (1.1) has the properties that

 ∞
0

(x2(t) + x6(t))dt < ∞ a.s.

and
 ∞
0

E(x2(t) + x6(t))dt < ∞. Moreover, as |x(t)|p ≤ x2(t) +
x6(t) for any p ∈ [2, 6], we have

 ∞

0

E|x(t)|pdt < ∞. (4.15)

Recalling q1 = 3, q2 = 2 and q = 6, we see that for p = 4, all the
conditions of Theorem 3.6 are satisfied and hence we have

lim
t→∞

E|x(t)|4dt = 0. (4.16)

5. Conclusion

In this paper we have established the new theory on the delay-
dependent stability criteria for highly nonlinear hybrid SDDEs.
The stabilities discussed in this paper include the H∞ stability
in Lp and asymptotic stability in Lp. The key feature of our
paper is that the coefficients of the underlying SDDEs are no
longer bounded by linear functions while all the existing delay-
dependent stability criteria could only be applied to the hybrid
SDDEs satisfying the linear growth condition. Our new theory is
therefore a breakthrough in the stability study of highly nonlinear
hybrid SDDEs.
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