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Abstract

Taking different structures in different modes into account, the paper has devel-
oped a new theory on the structured robust stability and boundedness for nonlinear
hybrid stochastic differential delay equations (SDDEs) without the linear growth
condition. A new Lyapunov function is designed in order to deal with the effects of
different structures as well as those of different parameters within the same modes.
Moreover, a lot of effort is put into showing the almost sure asymptotic stability in
the absence of the linear growth condition.

Key words: Hybrid SDDEs, robust stability, robust boundedness, Brownian
motion, Markov chain.

1 Introduction

Systems in many branches of science and industry do not only depend on the present
state and the past ones but may also experience abrupt changes in their structures and
parameters. Hybrid stochastic differential delay equations (SDDEs, also known as SDDEs
with Markovian switching) have been widely used to model these systems (see, e.g., books
[23, 24] and the references therein). One of the important issues in the study of hybrid
SDDEs is the asymptotic analysis of stability and boundedness (see, e.g., [3, 5, 13, 19]).
In the asymptotic analysis, the robust stability and boundedness have been two of most
popular topics. For example, Ackermann [1] gave a nice motivation of robust stability.
Hinrichsen and Pritchard [7, 8] presented an excellent discussion of the stability radii of
linear systems with structured perturbations. Su [26] and Tseng et al. [27] discussed
the robust stability for linear delay equations. In the aspect of robustness of stochastic
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stability, Haussmann [6] studied the robust stability for a linear system and Ichikawa
[11] for a semilinear system. Mao et al. [21] discussed the robust stability of uncertain
linear or semilinear stochastic delay systems. Mao [20] investigated the stability of the
stochastic delay interval system with Markovian switching. For more information on the
stability and boundedness of hybrid SDDEs please see, e.g., [12, 22, 23, 25]. However, all
of the papers, up to 2013, in this area only considered these robust problems where the
underlying systems were either linear or nonlinear with the linear growth condition (i.e.,
the coefficients are bounded by a linear function).

Hu et al. [9] were first to investigate the robust stability and boundedness for non-
linear hybrid SDDEs without the linear growth condition (i.e., the coefficients are not
bounded by a linear function, and we will refer to these coefficients as highly nonlinear
functions). The significant contribution of Hu et al. [9] lies in that it shows that a given
stable hybrid SDDE can not only tolerate the linear-type perturbation but also the highly
nonlinear perturbation without loss of the stability, while the papers up to 2013 could
only cope with the linear-type perturbation. In other words, Hu at al. [9] opened a new
chapter in the study of robust stability for highly nonlinear hybrid SDDEs. However, the
progress in this direction is a little due to the difficulty of high nonlinearity and [9] is the
only paper so far, to our best knowledge. The aim of this paper is to make some further
progress in this area.

Let us explain our key motivation briefly here though further details will be given
in Section 3. As we know, the hybrid SDDEs have been used to model practical sys-
tems that may experience abrupt changes in their structures and parameters (see, e.g.,
[3, 5, 13, 23]). The theory in [9] is good at dealing with the hybrid SDDEs that may
experience abrupt changes in their parameters. To explain this, assume that a popu-
lation system operates in two modes, dry and rain, and it switches from one mode to
the other according to a two-state Markov chain with state 1 for dry and 2 for rain.
In the dry mode, the system is described by a stochastic delay Lotka-Volterra equation
dx(t) = x(t)([a1−b1x

2(t)]dt+σ1x(t−τ)dB(t)), while in the rain mode by another equation
dx(t) = x(t)([a2 − b2x

2(t)]dt + σ2x(t − τ)dB(t)), where τ > 0 stands for the time delay,
a1, b1, a2, b2 are all positive numbers, B(t) is a scalar Brownian motion and σ1, σ2 represent
the intensities of the nonlinear stochastic perturbation. In other words, the population sys-
tem is described by the hybrid SDDE dx(t) = x(t)([ar(t)−br(t)x

2(t)]dt+σr(t)x(t−τ)dB(t)).
This can be regarded as a stochastically perturbed system of the hybrid delay sys-
tem dx(t)/dt = x(t)[ar(t) − br(t)x

2(t)] with the highly nonlinear stochastic perturba-
tion σr(t)x(t)x(t − τ)dB(t). Given the asymptotic boundedness of the delay system
dx(t)/dt = x(t)[ar(t) − br(t)x

2(t)], the theory in [9] shows the upper bounds on σ1 and
σ2 for the SDDE to remain asymptotically bounded. We observe that in this exam-
ple, when the system switches from one mode to the other, only the system parameters
change but the structure of the system remains the same type of Lotka-Volterra. On the
other hand, many practical systems may experience abrupt changes in their structures.
For example, a population system may change from a delay geometric Brownian motion
dx(t) = −2x(t)dt + σ1x(t − τ)dB(t) in the dry mode to a delay Lotka-Volterra equation
dx(t) = x(t)[1− 2x2(t)]dt + σ2x

2(t− τ)dB(t) in the rain mode (see, e.g., [2]); a financial
system may switch from a geometric Brownian motion dx(t) = a1x(t)dt+σ1x(t)dB(t) to a
constant elasticity of volatility (CEV) process dx(t) = a2(µ−x(t))dt+σ2x

1.5(t)dB(t) (see,
e.g., [15]). Is the theory in [9] applicable to such hybrid SDDEs? We will show a negative
answer in Section 3. This motivates us to develop a new theory on the robust stability and
boundedness for highly nonlinear hybrid SDDEs which may experience abrupt changes in
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their structures.

To make our theory more general, we consider the case where the space of modes,
S, of a given hybrid system can be divided into two proper subspaces, S1 and S2, such
that the system is described by a same type of SDDEs for modes in S1 (though different
parameters for different modes of course) but by a different type of SDDEs for modes in S2.
For example, for the population system in the second half of last paragraph, we have S =
{dry, rain}, S1 = {dry}, S2 = {rain} and the system is described by a delay geometric
Brownian motion for mode in S1 but by a delay Lotka-Volterra equation for mode in S2.
Of course, in our setting, both S1 and S2 could contain 2 or more modes (see Example
6.2). We should point out that it is possible to develop our theory to cope with even more
general case where S can be divided into more than two subspaces and the structures of
the underlying hybrid SDDE are significantly different among these subspaces. However,
to avoid our notation becoming too complicated, we will only concentrate on the case of
two subspaces in this paper.

The key contributions of our paper are highlighted below:

• This is the first paper that takes the different structures in different modes into
account to develop a new theory on the structured robust stability and boundedness
for highly nonlinear hybrid SDDEs.

• The new theory established in this paper is applicable to hybrid SDDEs which may
experience abrupt changes in both structures and parameters.

• The stabilities discussed in this paper include not only the pth moment and almost
sure exponential stability but also the pth moment and almost sure asymptotic
stability as well as H∞ stability. (For the definitions of these stabilities we refer the
reader to [9, 23].)

• A significant amount of new mathematics has been developed to deal with the
difficulties due to the structured difference and those without the linear growth
condition. For example, a new Lyapunov function will be designed in order to
deal with the effects of different structures for S1-modes and S2-modes as well as
the effects of different parameters within S1 and S2. A lot of effort has also been
put into showing the almost sure asymptotic stability without the linear growth
condition.

To develop our new theory, we will introduce some necessary notation in Section
2. We will show in Section 3 that the theory in [9] is not applicable to hybrid SDDEs
which may experience abrupt changes in structures and this motivates us to establish a
new theory in this paper. Our main results on robust boundedness and stability will be
discussed in Sections 4 and 5. We will present some case studies and examples in Section
6 to illustrate our theory. We will finally conclude our paper in Section 7.

2 Notation

Throughout this paper, unless otherwise specified, we use the following notation. Let
(Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., it is increasing and right continuous while F0 contains all P -null
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sets). Let B(t) = (B1(t), · · · , Bm(t))
T be an m-dimensional Brownian motion defined on

the probability space. Let r(t), t ≥ 0, be a right-continuous-left-limit Markov chain on
the probability space taking values in a finite state space S = {1, 2, · · · , N} with generator
Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{

γij∆+ o(∆) if i 6= j
1 + γij∆+ o(∆) if i = j

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while γii = −∑

j 6=i γij.
We assume that the Markov chain r(·) is independent of the Brownian motion B(·). We
also denote by |x| the Euclidean norm for x ∈ Rn. If A is a vector or matrix, its transpose
is denoted by AT . If A is a matrix, its trace norm is denoted by |A| =

√

trace(ATA). Let
R+ = [0,∞) and τ > 0. Denote by C([−τ, 0];Rn) the family of continuous functions ξ
from [−τ, 0] to Rn with the norm ‖ξ‖ = sup−τ≤θ≤0 |ξ(θ)|. If both a and b are real numbers,
then a∨b = max{a, b} and a∧b = min{a, b}. If G is a set, its indicator function is denoted
by IG. That is, IG(x) = 1 if x ∈ G and 0 otherwise.

We also need some notation on M-matrices. For a vector or matrix A, by A > 0
we mean all elements of A are positive. A Z-matrix is a square matrix A = (aij)N×N

which has non-positive off-diagonal entries (namely aij ≤ 0 for all i 6= j). The following
lemma provides us with two useful criteria to verify if a given Z-matrix is a nonsingular
M-matrix (see, e.g., [4, 9, 23]).

Lemma 2.1 Let A = (aij)N×N be a Z-matrix. Then A is a nonsingular M-matrix if and
only if one of the following statements holds:

(1) A−1 exists and its elements are all nonnegative.

(2) There exists x > 0 in RN such that Ax > 0.

By this lemma, we see, for example, that for any positive numbers εi (i ∈ S),

A := diag(ε1, · · · , εN)− Γ

is a nonsingular M-matrix as A(1, · · · , 1)T = (ε1, · · · , εN) > 0. This useful technique will
be used quite often when we discuss some special cases in Section 6 below.

3 Motivation

To motivate our new study in this paper, let us recall a key result on robust stability from
[9]. Consider an n-dimensional hybrid differential equation

dx(t)

dt
= F (x(t), t, r(t)), (3.1)

on t ≥ 0 and assume that this hybrid system is subject to a stochastic delay perturbation
and the perturbed system is described by a hybrid SDDE

dx(t) = F (x(t), t, r(t))dt+G(x(t− τ), t, r(t))dB(t). (3.2)

Here r(t), B(t) and τ have been defined in Section 2, both F : Rn × R+ × S → Rn and
G : Rn × R+ × S → Rn×m are Borel measurable and locally Lipschitz continuous in the
first variable. In [9], the following assumption was imposed.
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Assumption 3.1 Let q > p ≥ 2 and assume that for each i ∈ S, there is a real number
β̄i2 and a nonnegative number β̄i4 such that

xTF (x, t, i) ≤ β̄i2|x|2 − β̄i4|x|q−p+2 (3.3)

for all (x, t) ∈ Rn ×R+, and

Ā := −diag(pβ̄12, · · · , pβ̄N2)− Γ (3.4)

is a nonsingular M-matrix.

It is showed in [9] that this assumption along with the local Lipschtiz condition
guarantees the pth moment exponential stability of the given equation (3.1). The study
of the robust stability is to investigate how much the stochastic delay perturbation G(x(t−
τ), t, r(t))dB(t) the given stable equation (3.1) can tolerate so that its perturbed system
(3.2) remains stable. To measure the stochastic delay perturbation more precisely, the
following assumption was then imposed in [9].

Assumption 3.2 Let q > p ≥ 2 be the same as in Assumption 3.1 and assume that for
each i ∈ S, there are nonnegative numbers β̄i3 and β̄i5 such that

|G(y, t, i)|2 ≤ β̄i3|y|2 + β̄i5|y|q−p+2 (3.5)

for all (y, t) ∈ Rn ×R+.

The study of the robust stability is then to give the bounds on the parameters β̄i3

and β̄i5 in order for the perturbed system (3.2) to remain stable. The following theorem
describes this situation.

Theorem 3.3 ([9, Theorem 3.4]) Let Assumptions 3.1 and 3.2 hold. Assume that F (0, t, i) =
G(0, t, i) = 0 for all t ≥ 0 and i ∈ S. Define

(θ̄1, · · · , θ̄N)T := Ā−1(1, · · · , 1)T , (3.6)

(so all θ̄i’s are positive). If

β̄i3 <
2

p(p− 1)θ̄i
and β̄i5 <

2minj∈S θ̄jβ̄j4

(p− 1)θ̄i
(3.7)

for all i ∈ S, then the perturbed system (3.2) is exponentially stable in pth moment.

The significant contribution of this theorem lies in that it does not only show how
much the linear perturbation (controlled by

√

β̄i3|y|) but also how much the nonlinear

perturbation (controlled by
√

β̄i5|y|q−p+2) the given stable equation (3.1) can tolerate
without loss of the stability, while the existing papers up to 2013 could only cope with
the linear perturbation as pointed out in Section 1.

However, we shall now point out its limitation. Recall the population system stated
in Section 1: It operates in two modes: dry and rain. Assume that the switching between
two modes is modelled by a Markov chain r(t) on the state space S = {1, 2} (1 for dry
and 2 for rain) with the generator

Γ =

(

−1 1
6 −6

)

. (3.8)
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The system is modelled by the hybrid SDDE

dx(t) = F (x(t), r(t))dt+G(x(t− τ), r(t))dB(t), (3.9)

where B(t) is a scalar Brownian motion and

F (x, 1) = −2x, F (x, 2) = x− 2x3,

G(y, 1) = σ1y, G(y, 2) = σ2y
2

for x, y ∈ R, in which both σ1 and σ2 are positive constants. That is, the system satisfies
a delay geometric Brownian motion dx(t) = −2x(t)dt+ σ1x(t− τ)dB(t) in the dry mode
but a delay Lotka-Volterra equation dx(t) = x(t)[1− 2x2(t)]dt + σ2x

2(t− τ)dB(t) in the
rain mode. In other words, the system experiences abrupt changes in their structures
when it switches from one mode to the other. If both σ1 = 0 and σ2 = 0, equation (3.9)
becomes

dx(t)

dt
= F (x(t), r(t)). (3.10)

In other words, equation (3.9) is a stochastically perturbed system of equation (3.10).
Noting that

xF (x, 1) = −2x2 and xF (x, 2) = x2 − 2x4,

we see that condition (3.3) holds with p = 2, q = 4 and

β̄12 = −2, β̄14 = 0, β̄22 = 1, β̄24 = −2.

Thus, by (3.4),

Ā =

(

5 −1
−6 4

)

with Ā−1 =
1

14

(

4 1
6 5

)

.

So Ā is a nonsingular M-matrix. In other words, Assumption 3.1 is satisfied. This implies
that equation (3.10) is exponentially stable in mean square. We expect that equation
(3.10) can tolerate a liner perturbation σ1x(t − τ)dB(t) in mode 1 while a nonlinear
perturbation σ2x

2(t−τ)dB(t) in mode 2 given its linear and nonlinear structure in modes
1 and 2, respectively. The aim here is to obtain upper bounds on σ1 and σ2 so that the
perturbed system (3.9) remains stable. Noting

|G(y, 1)|2 = σ2
1y

2 and |G(y, 2)|2 = σ2
2y

4,

we see that Assumption 3.2 is satisfied with p = 2, q = 4 and

β̄13 = σ2
1, β̄15 = 0, β̄23 = 0, β̄25 = σ2

2.

To apply Theorem 3.3, we get θ̄1 = 5/14 and θ̄2 = 11/14 by (3.6). Hence, condition (3.7)
becomes

σ2
1 < 14/5 and σ2

2 < 0. (3.11)

Unfortunately, we never have σ2
2 < 0 so Theorem 3.3 is not applicable to the hybrid SDDE

(3.9). This indicates that the theory in [9] may not be applicable to the hybrid SDDEs
that may experience abrupt changes in their structures.
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4 Robust Boundedness

Consider an n-dimensional hybrid SDDE

dx(t) = f(x(t), x(t− τ), t, r(t))dt+ g(x(t), x(t− τ), t, r(t))dB(t) (4.1)

on t ≥ 0 with initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];Rn), where the coefficients
f : Rn × Rn × R+ × S → Rn and g : Rn × Rn × R+ × S → Rn×m are Borel measurable.
As a standing hypothesis, we assume the coefficients are locally Lipschitz continuous (see,
e.g., [16, 17]).

Assumption 4.1 For each integer h ≥ 1 there is a positive constant Kh such that

|f(x, y, t, i)− f(x̄, ȳ, t, i)|2 ∨ |g(x, y, t, i)− g(x̄, ȳ, t, i)|2
≤ Kh(|x− x̄|2 + |y − ȳ|2)

for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ h and all (t, i) ∈ R+ × S.

It is very easy to verify this local Lipschitz assumption. For example, the assumption
is satisfied if f and g are continuously differentiable in x and y or they are differentiable
in x and y with locally bounded derivatives. It is known that this classical assumption
covers many hybrid SDDEs in the real world (see, e.g., books [23, 24] and the references
therein). Of course, this assumption is not enough to guarantee the global solution (i.e.,
no explosion at a finite time). A standard additional condition for the existence and
uniqueness of the global solution of the SDDE (4.1) would be the linear growth condition
(see, e.g., [18, 23]). However, our aim here is to study the structured robust stability and
boundedness of highly nonlinear SDDEs that do not satisfy the linear growth condition.
We hence need to propose alternative assumptions.

Assumption 4.2 Assume that the state space S of the Markov chain is divided into
two proper sub-spaces S1 and S2 and we may, without loss of any generality, let S1 =
{1, · · · , N1} and S2 = {N1 + 1, · · · , N}, where 1 ≤ N1 < N . Assume also that there are
two constants q > p ≥ 2. Assume furthermore that for each i ∈ S1, there are constants
αi2 ∈ R and αi1, αi3 ∈ R+ such that, for all (x, y, t) ∈ Rn ×Rn ×R+,

xTf(x, y, t, i) +
q − 1

2
|g(x, y, t, i)|2 ≤ αi1 + αi2|x|2 + αi3|y|2; (4.2)

while for each i ∈ S2, there are constants αi2 ∈ R, αi4 > 0 and αi1, αi3, αi5 ∈ R+ such
that

xTf(x, y, t, i) +
p− 1

2
|g(x, y, t, i)|2

≤ αi1 + αi2|x|2 + αi3|y|2 − αi4|x|q−p+2 + αi5|y|q−p+2. (4.3)

The reason why S is divided into two proper subspaces S1 and S2 is because the
structure of the underlying hybrid SDDE in S1-modes differs from that in S2-modes, as
explained in Section 1. In terms of mathematics, conditions (4.2) and (4.3) describethe
difference in structure. More understandably, condition (4.2) means that the hybrid
SDDE in S1-modes satisfies the classical Khasminskii-type condition (see, e.g., [14, 23])
while condition (4.2) means that the hybrid SDDE in S2-modes satisfies the generalised
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Khasminskii-type condition (see, e.g., [10]). In layman’s terms, the coefficients of the
SDDE in S1-modes may grow linearly in the delay component x(t− τ) while in S2-modes
it may grow polynomially. It is easy to show if a function grows linearly or polynomially
and hence it is not difficult to verify our Assumption 4.2 as demonstrated in our examples
in Section 6.

Noting that in Assumption 4.2, we only require αi2 ∈ R for all i ∈ S. According to the
Khasminskii-type theorems (see, e.g., [14, 10, 23]), the solution of the hybrid SDDE may
grow exponentially. But our aim in this paper is to study the asymptotic boundedness
and stability. We therefore need to impose some additional conditions on αi2’s.

Assumption 4.3 Under Assumption 4.2, assume furthermore that

A := −diag(pα12, · · · , pαN2)− Γ (4.4)

and
D := −diag(qα12, · · · , qαN12)− (γij)i,j∈S1

(4.5)

are both nonsingular M-matrices.

This assumption means that some αi2 must be negative; otherwise A and D could
not be nonsingular M-matrices. Hence, the SDDE in mode i with αi2 < 0 should be
asymptotically bounded or stable. Of course, the SDDE in mode i with αi2 ≥ 0 could still
grow. However, conditions (4.4) and (4.5) mean that the switchings from those modes
with αi2 ≥ 0 to those with αi2 < 0 are sufficiently fast so that, overall, the underlying
hybrid SDDE is still asymptotically bounded or stable. We should also point out that
Assumption 4.3 can be verified easily. In fact, compute A−1 and D−1 easily using Matlab
or R and then check if their elements are all nonnegative. If so, by Lemma 2.1, they are
nonsingular M-matrices.

When we design our Lyapunov function (see (4.15)), we will need two sets of numbers

(θ1, · · · , θN)T = A−1(1, · · · , 1)T (4.6)

and
(η1, · · · , ηN1

)T = D−1(β, · · · , β)T , (4.7)

where β is a free positive parameter. Under Assumption 4.3, we see, by Lemma 2.1, that
all θi (i ∈ S) and ηi (i ∈ S1) are positive. We will see that β plays a key role in balancing
the effects of different structures for S1-modes and S2-modes. In particular, if we choose
β be sufficiently small, then all ηi will be small too. This means that we can always
make condition (4.9) in the following theorem possible by choosing β sufficiently small.
In particular, let us make a remark where we show a simple method on how to determine
β to guarantee condition (4.9).

Remark 4.4 Let d̃ be the maximum of the row sums ofD−1 and γ̃ = maxi∈S2

(

∑

j∈S1
γij

)

.

Then ηi ≤ βd̃ for all i ∈ S1 and
∑

j∈S1
γijηj ≤ βd̃γ̃ for all i ∈ S2. Hence, if we choose

β =
mini∈S2

pθiαi4

1 + d̃γ̃
(4.8)

then condition (4.9) is guaranteed.
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Let us now state our first result in this paper.

Theorem 4.5 Let Assumptions 4.1, 4.2 and 4.3 hold. Choose β > 0 sufficiently small
for

αi4 ≥
β +

∑

j∈S1
γijηj

pθi
, ∀i ∈ S2, (4.9)

where θi and ηi have been defined by (4.6) and (4.7). Assume also that

αi3 ≤
1

pθi
, ∀i ∈ S, (4.10)

αi3 <
β

ηi(2q − p)
, ∀i ∈ S1, (4.11)

and

αi5 <
βq

θip(2q − p)
, ∀i ∈ S2. (4.12)

Then for any initial data ξ ∈ C([−τ, 0];Rn), there is a unique global solution x(t) to the
hybrid SDDE (4.1) on t ∈ [−τ,∞). Moreover, the solution has the properties that

lim sup
t→∞

1

t

∫ t

0

E|x(s)|qds ≤ K1, (4.13)

and
lim sup
t→∞

E|x(t)|p ≤ K2, (4.14)

where K1 and K2 are positive constants independent of the initial data ξ.

Before the proof, let us give some insight on the relevance of this theorem. We have
explained that Assumptions 4.1, 4.2 and 4.3 cover many hybrid SDDEs in the real world
while they can be verified easily. Remark 4.4 shows, at least one way, how to determine
β to make condition (4.9) hold. The right-hand-side terms of inequalities (4.10)-(4.12)
can then computed straightaway and these inequalities give the bounds on the nonlinear
perturbation intensities αi3 and αi5 so that the underlying hybrid SDDE is bounded in
Lp asymptotically as well as in time-average of Lq.

Proof. The proof is very technical. To make it more understandable, we will divide it
into several steps.

Step 1. In this step, we will define a Lyapunov function V : Rn × S → R+ by

V (x, i) =

{

θi|x|p + ηi|x|q if i ∈ S1;
θi|x|p if i ∈ S2

(4.15)

and show that it has some nice properties. First of all, it is easy to see that

c1|x|p ≤ V (x, i) ≤ c2(|x|p + |x|q), (4.16)

where
c1 = min

i∈S
θi, c2 =

(

max
i∈S

θi

)

∨
(

max
i∈S1

ηi

)

.

By the generalized Itô formula (see, e.g., [23, Theorem 1.45 on page 48]), we have that

dV (x(t), r(t)) = LV (x(t), x(t− τ), t, r(t))dt+ dM(t) (4.17)

9



on t ≥ 0, where M(t) is a continuous local martingale with M(0) = 0 (the explicit
form of M(t) is of no use in this paper but can be found in [23]), and the function
LV : Rn ×Rn ×R+ × S → R is defined by

LV (x, y, t, i) = Vx(x, i)f(x, y, t, i)

+
1

2
trace[gT (x, y, t, i)Vxx(x, i)g(x, y, t, i)] +

∑

j∈S

γijV (x, j),

in which

Vx(x, i) =
(∂V (x, i)

∂x1

, · · · , ∂V (x, i)

∂xn

)

and Vxx(x, i) =
(∂2V (x, i)

∂xk∂xl

)

n×n
.

Let us first estimate LV (x, y, t, i) for i ∈ S1. In this case, we have

LV (x, y, t, i) = θip|x|p−2xTf(x, y, t, i)

+ 1
2
θip|x|p−2|g(x, y, t, i)|2

+ 1
2
θip(p− 2)|x|p−4|xT g(x, y, t, i)|2

+ ηiq|x|q−2xTf(x, y, t, i)

+ 1
2
ηiq|x|q−2|g(x, y, t, i)|2

+ 1
2
ηiq(q − 2)|x|q−4|xT g(x, y, t, i)|2

+
∑

j∈S

γijθj|x|p +
∑

j∈S1

γijηj|x|q.

Noting that |xT g(x, y, t, i)|2 ≤ |x|2|g(x, y, t, i)|2, we get

LV (x, y, t, i) ≤ pθi|x|p−2
(

xTf(x, y, t, i) +
p− 1

2
|g(x, y, t, i)|2

)

+ qηi|x|q−2
(

xTf(x, y, t, i) +
q − 1

2
|g(x, y, t, i)|2

)

+
∑

j∈S

γijθj|x|p +
∑

j∈S1

γijηj|x|q. (4.18)

By Assumption 4.2, we then have

LV (x, y, t, i) ≤ pθi|x|p−2
(

αi1 + αi2|x|2 + αi3|y|2
)

+ qηi|x|q−2
(

αi1 + αi2|x|2 + αi3|y|2
)

+
∑

j∈S

γijθj|x|p +
∑

j∈S1

γijηj|x|q. (4.19)

But, by (4.6) and (4.7), we have

pαi2θi +
N
∑

j=1

γijθj = −1 and qαi2ηi +
∑

j∈S1

γijηj = −β.

Hence

LV (x, y, t, i) ≤ pθiαi1|x|p−2 − |x|p + pθiαi3|x|p−2|y|2
+ qηiαi1|x|q−2 − β|x|q + qηiαi3|x|q−2|y|2. (4.20)
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Note that pθiαi3 ≤ 1 by condition (4.10), while by the well-known Young inequality (see
[23, p52]), we have

|x|p−2|y|2 ≤ p− 2

p
|x|p + 2

p
|y|p

and similarly for |x|q−2|y|2. We hence obtain from (4.20) that, for i ∈ S1,

LV (x, y, t, i) ≤ pθiαi1|x|p−2 − (2/p)|x|p + (2/p)|y|p
+ qηiαi1|x|q−2 − β|x|q

+ qηiαi3

(q − 2

q
|x|q + 2

q
|y|q

)

. (4.21)

Similarly, for i ∈ S2, we can show that

LV (x, y, t, i) ≤ pθiαi1|x|p−2 − |x|p + pθiαi3|x|p−2|y|2

+
(

− pθiαi4 +
∑

j∈S1

γijηj

)

|x|q

+ pθiαi5|x|p−2|y|q−p+2. (4.22)

But, by condition (4.9), we have

−pθiαi4 +
∑

j∈S1

γijηj ≤ −β. (4.23)

Consequently

LV (x, y, t, i) ≤ pθiαi1|x|p−2 − |x|p + pθiαi3|x|p−2|y|2
− β|x|q + pθiαi5|x|p−2|y|q−p+2. (4.24)

By condition (4.10) and the Young inequality, we then obtain that, for i ∈ S2,

LV (x, y, t, i) ≤ pθiαi1|x|p−2 − (2/p)|x|p + (2/p)|y|p

− β|x|q + pθiαi5

(p− 2

q
|x|q + q − p+ 2

q
|y|q

)

. (4.25)

Combining (4.21) and (4.25), we see that, for all i ∈ S,

LV (x, y, t, i) ≤ c3(|x|p−2 + |x|q−2)− (2/p)|x|p + (2/p)|y|p

− β|x|q + β̂
(q − 2

q
|x|q + q − p+ 2

q
|y|q

)

, (4.26)

where
β̂ :=

(

max
i∈S1

qηiαi3

)

∨
(

max
i∈S2

pθiαi5

)

,

c3 :=
(

max
i∈S

pθiαi1

)

∨
(

max
i∈S1

qηiαi1

)

.

By conditions (4.11) and (4.12), we have β̂ < βq
2q−p

. Define

2β1 := β − β̂(2q − p)

q
and β2 :=

β̂(q − p+ 2)

q
.
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Then both β1 and β2 are positive numbers. Noting that

β − β̂(q − 2)

q
= 2β1 + β2,

we obtain from (4.26) that, for all i ∈ S,

LV (x, y, t, i) ≤ c3(|x|p−2 + |x|q−2)− (2/p)|x|p + (2/p)|y|p
− (2β1 + β2)|x|q + β2|y|q. (4.27)

Step 2. In this step, we will show the existence and uniqueness of the global solution
of the SDDE (4.1) given any initial data ξ ∈ C([−τ, 0];Rn). Under Assumption 4.1, it is
known (see, e.g., [23, Theorem 7.12 on page 278]) that there is a unique maximal local
solution x(t) on t ∈ [−τ, σ∞), where σ∞ is the explosion time. To show this is a unique
global solution, we need to show σ∞ = ∞ a.s. Let k0 > 0 be a sufficiently large integer
such that ‖ξ‖ < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ≥ 0 : |x(t)| ≥ k},

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set). It is
easy to see that τk is increasing as k → ∞ and τ∞ := limk→∞ τk ≤ σ∞ a.s. Hence the aim
of this step will be done if we can show that τ∞ = ∞ a.s.

We can rearrange (4.27) as

LV (x, y, t, i) ≤ c3(|x|p−2 + |x|q−2)− β1|x|q − (2/p)|x|p + (2/p)|y|p
− (β1 + β2)|x|q + β2|y|q (4.28)

for all (x, y, t, i) ∈ Rn ×Rn ×R+ × S. Set

c4 := sup
x∈Rn

(

c3(|x|p−2 + |x|q−2)− β1|x|q
)

< ∞.

Substituting this into (4.28) yields

LV (x, y, t, i) ≤ c4 − (2/p)|x|p + (2/p)|y|p − (β1 + β2)|x|q + β2|y|q. (4.29)

Applying the generalized Itô formula, we then have

EV (x(t ∧ τk), r(t ∧ τk)) ≤ EV (x(0), r(0))

+ E

∫ t∧τk

0

(

c4 − (2/p)|x(s)|p + (2/p)|x(s− τ)|p

− (β1 + β2)|x(s)|q + β2|x(s− τ)|q
)

ds (4.30)

for all t ≥ 0. Noting that

∫ t∧τk

0

|x(s− τ)|pds ≤
∫ 0

−τ

|ξ(s)|pds+
∫ t∧τk

0

|x(s)|pds

and
∫ t∧τk

0

|x(s− τ)|qds ≤
∫ 0

−τ

|ξ(s)|qds+
∫ t∧τk

0

|x(s)|qds,
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we have

E

∫ t∧τk

0

[

β2(|x(s− τ)|q − |x(s)|q) + 2

p
(|x(s− τ)|p − |x(s)|p)

]

ds

≤
∫ 0

−τ

[

2

p
|ξ(s)|p + β2|ξ(s)|q

]

ds.

This, along with (4.16) and (4.30), implies that

c1E|x(t ∧ τk)|p ≤ c5 + c4t− β1E

∫ t∧τk

0

|x(s)|qds, (4.31)

where

c5 = c2(|ξ(0)|p + |ξ(0)|q) +
∫ 0

−τ

(

(2/p)|ξ(s)|p + β2|ξ(s)|q
)

ds.

Consequently

c1k
pP (τk ≤ t) ≤ c5 + c4t.

Letting k → ∞ gives that P (τ∞ ≤ t) = 0. This means that τ∞ > t a.s. Letting t → ∞,
we get the desired result τ∞ = ∞ a.s.

Step 3. We shall show assertion (4.13). It follows from (4.31) that

β1E

∫ t∧τk

0

|x(s)|qds ≤ c5 + c4t.

Letting k → ∞ and then using the Fubini theorem, we get

β1

∫ t

0

E|x(s)|qds ≤ c5 + c4t.

Dividing both sides by β1t and then letting t → ∞, we see

lim sup
t→∞

1

t

∫ t

0

E|x(s)|qds ≤ c4
β1

,

which is the desired assertion (4.13).

Step 4. In this final step we shall prove assertion (4.14). Choose a positive constant
δ sufficiently small for

β1 > δc2 + β2(e
δτ − 1). (4.32)

By the generalized Itô formula again, we have that for any t ≥ 0,

eδtEV (x(t), r(t)) = EV (x(0), r(0))

+ E

∫ t

0

eδs
[

δV (x(s), r(s)) + LV (x(s), x(s− τ), s, r(s))
]

ds. (4.33)

By (4.16) and (4.29), we then have

c1e
δtE|x(t)|p ≤ c2(|ξ(0)|p + |ξ(0)|q)

+ E

∫ t

0

eδs
[

δc2(|x(s)|p + |x(s)|q)

+ c4 − (2/p)|x(s)|p + (2/p)|x(s− τ)|p

− (β1 + β2)|x(s)|q + β2|x(s− τ)|q
]

ds. (4.34)
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Noting that
∫ t

0

eδs|x(s− τ)|pds ≤ τeδτ‖ξ‖p +
∫ t

0

eδ(s+τ)|x(s)|pds

etc., we get

c1e
δtE|x(t)|p ≤ c6 + E

∫ t

0

eδsH(|x(s)|)ds, (4.35)

where c6 = (c2 + 2τeδτ/p)‖ξ‖p + (c2 + β2τe
δτ )‖ξ‖q and H : R+ → R is defined by

H(u) = c4 + [δc2 + (2/p)(eδτ − 1)]up − [β1 − δc2 − β2(e
δτ − 1)]uq.

But, by (4.32), we have
c7 := sup

u≥0
H(u) < ∞.

It then follows from (4.35) that

c1e
δtE|x(t)|p ≤ c6 + (c7/δ)e

δt. (4.36)

This implies
lim sup
t→∞

E|x(t)|p ≤ c7/(c1δ),

which is the desired assertion (4.14). The proof is therefore complete. 2

5 Robust Stability

In this section we will discuss the robust stability of the SDDE (4.1). For this purpose,
we will assume that f(0, 0, t, i) = 0 and g(0, 0, t, i) = 0 for all (t, i) ∈ R+ × S. Hence the
SDDE (4.1) admits a trivial solution x(t) = 0 for all t ≥ 0 when the initial data ξ = 0. It
is also natural to let αi1 = 0 for all i ∈ S in Assumption 4.2. The following theorem gives
a criterion on the H∞-stability in Lq.

Theorem 5.1 Let all the conditions in Theorem 4.5 hold and, moreover, αi1 = 0 for all
i ∈ S. Then for any initial data ξ ∈ C([−τ, 0];Rn), the unique global solution x(t) of the
SDDE (4.1) has the property that

∫ ∞

0

E|x(t)|qdt < ∞. (5.1)

Proof. We use the same notation as in the proof of Theorem 4.5. Clearly, everything we
showed there is correct. In particular, c3 = 0 in (4.27) given that αi1 = 0 for all i ∈ S.
Hence, (4.27) becomes

LV (x, y, t, i) ≤ −(2/p)|x|p + (2/p)|y|p − (2β1 + β2)|x|q + β2|y|q. (5.2)

It is then easy to show by the generalized Itô formula that

2β1

∫ t

0

E|x(s)|qds ≤ (c2 + 2τ/p+ β2τ)(‖ξ‖p + ‖ξ‖q).

Letting t → ∞ yields assertion (5.1). 2
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In general it is not possible to imply limt→∞ E|x(t)|q = 0 from (5.1). On the other
hand, You et al. [28] showed this is possible if both coefficients f and g of the SDDE
(4.1) satisfy the linear growth condition. However, we are interested in the SDDEs which
do not satisfy the linear growth condition in this paper. It is therefore useful if we can
show limt→∞ E|x(t)|q = 0 from (5.1) without the linear growth condition. The following
theorem describes this possibility which is one of our new contributions in this paper.

Theorem 5.2 In addition to the same conditions as in Theorem 5.1 , assume that there
is a positive constant K such that

xTf(x, y, t, i) +
q − 1

2
|g(x, y, t, i)|2 ≤ K(|x|2 + |y|2) (5.3)

for all (x, y, t) ∈ Rn ×Rn ×R+. Then for any initial data ξ ∈ C([−τ, 0];Rn), the unique
global solution x(t) of the SDDE (4.1) has the property that

lim
t→∞

E|x(t)|q = 0. (5.4)

Proof. Fix any initial data ξ ∈ C([−τ, 0];Rn). If (5.4) were not true, there must exist
a positive number ε and a sequence of positive numbers {tk}k≥1 such that tk → ∞ as
k → ∞ and

E|x(tk)|q ≥ 2ε, ∀k ≥ 1. (5.5)

Without loss of generality, we may let t1 ≥ 2τ and tk+1 > tk + 2τ . By (5.1), we hence
have

∞
∑

k=1

∫ tk

tk−2τ

E|x(s)|qds ≤
∫ ∞

0

E|x(s)|qds < ∞.

Consequently, there exists a k0 such that
∫ tk

tk−2τ

E|x(s)|qds ≤ ε

2qK
, ∀k ≥ k0. (5.6)

On the other hand, for any k ≥ k0 and t ∈ [tk−τ, tk], it is easy to show by the Itô formula
that

E|x(tk)|q − E|x(t)|q ≤ E

∫ tk

t

q|x(s)|q−2
(

xT (s)f(x(s), x(s− τ), s, r(s))

+
q − 1

2
|g(x(s), x(s− τ), s, r(s))|2

)

ds. (5.7)

By condition (5.3) and inequality (5.6), we derive

E|x(tk)|q − E|x(t)|q ≤ E

∫ tk

t

qK|x(s)|q−2(|x(s)|2 + |x(s− τ)|2)ds

≤ E

∫ tk

t

2qK(|x(s)|q + |x(s− τ)|q)ds

≤ 2qK

∫ tk

tk−τ

E(|x(s)|q + |x(s− τ)|q)ds

= 2qK

∫ tk

tk−2τ

E|x(s)|qds

≤ ε. (5.8)
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This, together with (5.5), implies

ε ≤ E|x(tk)|q − ε ≤ E|x(t)|q, ∀t ∈ [tk − τ, tk]. (5.9)

Thus

∫ ∞

0

E|x(t)|qdt ≥
∞
∑

k=k0

∫ tk

tk−τ

E|x(t)|qdt ≥
∞
∑

k=k0

ετ = ∞. (5.10)

But, this contradicts (5.1). The desired assertion (5.4) must therefore hold. 2

In general it is not possible to imply limt→∞ |x(t)| = 0 a.s. from (5.1). However, this
is possible in our case and we will show this under the same conditions of Theorem 5.1
without any additional condition, unlike Theorem 5.2 which needs the additional condition
(5.3). We should also point out that You et al. [28] showed limt→∞ |x(t)| = 0 a.s. from
E
∫∞

0
|x(t)|2dt < ∞ (please note it is 2 but not q) under the linear growth condition.

Our new proof given below not only overcomes the difficulty without the linear growth
condition but is also much simplified.

Theorem 5.3 Under the same conditions of Theorem 5.1, for any initial data ξ ∈
C([−τ, 0];Rn), the unique global solution x(t) of the SDDE (4.1) has the property that

lim
t→∞

|x(t)| = 0 a.s. (5.11)

Proof. Again fix any initial data ξ ∈ C([−τ, 0];Rn). We first observe that (5.1) is
equivalent to that

c8 := E

∫ ∞

0

|x(t)|qdt < ∞ (5.12)

by the well-known Fubini theorem. This implies that
∫∞

0
|x(t)|qdt < ∞ a.s. and hence

lim inf
t→∞

|x(t)| = 0 a.s. (5.13)

But this is not assertion (5.11) yet. Let us now assume that the assertion were not true.
There is then a positive number ε ∈ (0, 1/4) such that

P
(

lim sup
t→∞

|x(t)| > 2ε
)

≥ 4ε. (5.14)

Let τk be the same stopping time as defined in the proof of Theorem 4.5. We can easily
show from (5.2) that

c1k
pP (τk ≤ t) ≤ c1E|x(t ∨ τk)|p ≤ c9, ∀t > 0,

where c1 was defined before and c9 is a positive constant dependent on the initial data
only. Letting t → ∞ and then choosing k sufficiently large for c9/c1k

p ≤ ε, we get
P (τk < ∞) ≤ ε. This means that

P (|x(t)| < k for ∀t ≥ −τ) ≥ 1− ε. (5.15)

Combining (5.14) and (5.15) together gives

P (Ω̄) ≥ 3ε, (5.16)
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where
Ω̄ =

{

lim sup
t→∞

|x(t)| > 2ε and |x(t)| < k for ∀t ≥ −τ
}

.

Fix k from now on and define the stopped process y(t) = x(t∧ τk) for t ≥ 0. Clearly, y(t)
is an Itô process of the form

dy(t) = f̄(t)dt+ ḡ(t)dB(t), (5.17)

where

f̄(t) = f(x(t), x(t− τ), t, r(t))I[0,τk)(t),

ḡ(t) = g(x(t), x(t− τ), t, r(t))I[0,τk)(t).

By Assumption 4.1 as well as f(0, 0, t, i) = 0 and g(0, 0, t, i) = 0, we see that f̄(t) and
ḡ(t) are bounded processes, say

|f̄(t)| ∨ |ḡ(t)| ≤ c10 a.s. (5.18)

for all t ≥ 0. Let us now define a sequence of stopping times

ρ1 = inf{t ≥ 0 : |y(t)| ≥ 2ε},
ρ2i = inf{t ≥ ρ2i−1 : |y(t)| ≤ ε}, i = 1, 2, · · · ,

ρ2i+1 = inf{t ≥ ρ2i : |y(t)| ≥ 2ε}, i = 1, 2, · · · .

By (5.13) and the definition of Ω̄, we have

Ω̄ ⊂ {ρi < ∞}, i = 1, 2, · · · . (5.19)

Choose a positive number δ and a positive integer j such that

c10(δ + 4
√
2δ) ≤ ε2 and c8 < εq+1δj. (5.20)

By (5.16) and (5.19), we can further choose a sufficiently large number T for

P (ρ2j ≤ T ) ≥ 2ε. (5.21)

In particular, if ρ2j ≤ T , |y(ρ2j)| = ε and hence ρ2j < τk by the definition of y(t) (otherwise
|y(ρ2j)| = |y(τk)| = k, a contradiction). In other words, we have

y(t, ω) = x(t, ω) for all 0 ≤ t ≤ ρ2j and ω ∈ {ρ2j ≤ T}. (5.22)

By the Burkholder-Davis-Gundy inequality (see, e.g., [23, Theorem 2.13 on page 70]), we
can then derive from (5.17) that, for 1 ≤ i ≤ j,

E
(

sup
0≤t≤δ

∣

∣|y(ρ2i−1 ∧ T + t)| − |y(ρ2i−1 ∧ T )|
∣

∣

)

≤E
(

sup
0≤t≤δ

|y(ρ2i−1 ∧ T + t)− y(ρ2i−1 ∧ T )|
)

≤E

∫ ρ2i−1∧T+δ

ρ2i−1∧T

|f̄(s)|ds

+4
√
2E

(

∫ ρ2i−1∧T+δ

ρ2i−1∧T

|ḡ(s)|2ds
)1/2

≤c10(δ + 4
√
2δ).
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This, together with (5.20), implies

P
(

sup
0≤t≤δ

∣

∣|y(ρ2i−1 ∧ T + t)| − |y(ρ2i−1 ∧ T )|
∣

∣ ≥ ε
)

≤ ε.

Noting that ρ2i−1 ≤ T if τ2j ≤ T , we can derive from (5.21) and the above inequality that

P
(

{ρ2j ≤ T} ∩
{

sup
0≤t≤δ

∣

∣|y(ρ2i−1 + t)| − |y(ρ2i−1)|
∣

∣ < ε
)

= P (ρ2j ≤ T )− P
(

{ρ2j ≤ T}

∩
{

sup
0≤t≤δ

∣

∣|y(ρ2i−1 ∧ T + t)| − |y(ρ2i−1 ∧ T )|
∣

∣ ≥ ε
)

≥ P (ρ2j ≤ T )

− P
(

sup
0≤t≤δ

∣

∣|y(ρ2i−1 ∧ T + t)| − |y(ρ2i−1 ∧ T )|
∣

∣ ≥ ε
)

≥ ε.

This implies easily that

P
(

{ρ2j ≤ T} ∩ {ρ2i − ρ2i−1 ≥ δ}
)

≥ ε. (5.23)

Finally, by (5.12), (5.22) and (5.23), we derive

c8 = E

∫ ∞

0

|x(t)|qdt

≥
j

∑

i=1

E
(

I{ρ2j≤T}

∫ ρ2i

ρ2i−1

|y(t)|qdt
)

≥ εq
j

∑

i=1

E
(

I{ρ2j≤T}(ρ2i − ρ2i−1)
)

≥ εqδ

j
∑

i=1

P
(

{ρ2j ≤ T} ∩ {ρ2i − ρ2i−1 ≥ δ}
))

≥ εq+1δj.

But this contradicts the second inequality in (5.20). Therefore the desired assertion (5.11)
must hold. 2

The theorems above do not show how fast the solution will tends to the equilibrium
state 0 as t → ∞. It is more desirable if we could describe the rate of this asymptotic con-
vergence. The exponential stability meets this desire. Let us now discuss the robustness
of pth moment and almost sure exponential stability to close this section.

Theorem 5.4 Let all the conditions in Theorem 4.5 hold except condition (4.10) which
is strengthened by

αi3 <
1

pθi
, ∀i ∈ S (5.24)

and, moreover, αi1 = 0 for all i ∈ S. Then there is a positive number λ such that for any
initial data ξ ∈ C([−τ, 0];Rn), the unique global solution x(t) of the SDDE (4.1) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ −λ (5.25)
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and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −λ

p
a.s. (5.26)

Proof. In the same way as (4.27) was proved, we can show from (4.20) and (4.24) that

LV (x, y, t, i) ≤ −|x|p + α̂|x|p−2|y|2
− (2β1 + β2)|x|q + β2|y|q, (5.27)

where
α̂ := max

i∈S
pθiαi3 < 1

by condition (5.24). This implies

LV (x, y, t, i) ≤ −(1− α̂(p− 2)/p)|x|p + (2α̂/p)|y|p
− (2β1 + β2)|x|q + β2|y|q. (5.28)

Let λ > 0 be sufficiently small for

1− α̂(p− 2)/p ≥ c2λ+ 2α̂eλτ/p (5.29)

and
2β1 + β2 ≥ c2λ+ β2e

λτ . (5.30)

By the generalized Itô formula, we have that

eλtV (x(t), r(t))− V (x(0), r(0))

=

∫ t

0

eλs
(

λV (x(s), r(s))

+ LV (x(s), x(s− τ), s, r(s))
)

ds+M(t) (5.31)

on t ≥ 0, where M(t) is a continuous local martingale with M(0) = 0. Making use of
(4.16), (5.28)–(5.30), we can then easily show

c1e
λt|x(t)|p ≤ c11 +M(t), (5.32)

where c11 is a positive number dependent on the initial data only. Since M(t) is a local
martingale, there is a sequence {τ̃k}∞k=1 of stopping times such that τ̃k → ∞ as k → ∞
while for each k, M(t ∧ τ̃k) is a martingale on t ≥ 0. It follows from (5.32) that, for each
k ≥ 1,

c1e
λ(t∧τ̃k)|x(t ∧ τ̃k)|p ≤ c11 +M(t ∧ τ̃k). (5.33)

Taking the expectations on both sides yields

c1E
[

eλ(t∧τ̃k)|x(t ∧ τ̃k)|p
]

≤ c11. (5.34)

Letting k → ∞, we get assertion (5.25) immediately. Moreover, by the nonnegative
semimartingale convergence theorem (see, e.g., [23, Theorem 1.10 on page 18]), we have

lim sup
t→∞

(

c1e
λt|x(t)|p

)

< ∞ a.s.

which implies another assertion (5.26). 2
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6 Special Cases and Examples

In this section we will discuss a number of special cases of hybrid SDDEs in order to
demonstrate how our new theory established in the previous two sections can be applied
to show the robustness of boundedness and stability of a given hybrid systems subject
to various types of nonlinear stochastic perturbations. As a standing hypothesis in this
section, we will assume that all coefficients of SDDEs in this section will satisfy the local
Lipschitz condition and, moreover, q > p ≥ 2. To make our cases a bit simple, we assume
that the given hybrid system is described by a hybrid differential equation

dx(t)/dt = F (x(t), t, r(t)). (6.1)

Its structured differences and various stochastic perturbations will be discussed in the
following cases. We leave the situation to the reader where the given hybrid system is
described by a hybrid differential delay equation dx(t)/dt = f(x(t), x(t− τ), t, r(t)).

6.1 Case 1

Assume that
xTF (x, t, i) ≤ ai1|x|2 − ai2|x|q−p+2 (6.2)

for (x, t, i) ∈ Rn × R+ × S. Here ai2 > 0 for i ∈ S but, for the structured difference, we
let ai1 < 0 for i ∈ S1 and ai1 ∈ R for i ∈ S2. This means that the differential equation in
mode i ∈ S1 is stable but may not in mode i ∈ S2. In order for the hybrid equation (6.1)
to be stable, we assume moreover that

A := −diag(pa11, · · · , paN1)− Γ (6.3)

is a nonsingular M-matrix. It is then known (see, e.g., [9]) that equation (6.1) is expo-
nentially stable in pth moment. Suppose that this equation is subject to a stochastic
perturbation and the perturbed system is described by

dx(t) = F (x(t), t, r(t))dt+G(x(t), x(t− τ), t, r(t))dB(t), (6.4)

and the perturbation has its structured difference: when mode i ∈ S1, the perturbation
is independent of x(t− τ), namely

G(x, y, t, i) = G1(x, t, i), i ∈ S1;

but when mode i ∈ S2, the perturbation is independent of x(t), namely

G(x, y, t, i) = G2(y, t, i), i ∈ S2.

Assume furthermore that

|G1(x, t, i)| ≤ ai3|x|q−p+2, i ∈ S1 (6.5)

and
|G2(y, t, i)| ≤ ai3|y|q−p+2, i ∈ S2, (6.6)

where ai3 > 0. Our aim here is to give a bound on ai3 so that the perturbed system (6.4)
remains stable. Note that for i ∈ S1

xTF (x, t, i) + 0.5(q − 1)|G1(x, t, i)|2
≤ ai1|x|2 − (ai2 − 0.5(q − 1)ai3)|x|q−p+2;
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while for i ∈ S2

xTF (x, t, i) + 0.5(p− 1)|G2(y, t, i)|2
≤ ai1|x|2 − ai2|x|q−p+2 + 0.5(p− 1)ai3|y|q−p+2.

Hence, if we impose the following bounds

ai3 ≤
2ai2
q − 1

, i ∈ S1, (6.7)

then Assumption 4.2 is satisfied with

αi1 = 0, αi2 = ai1, αi3 = 0 for i ∈ S;

αi4 = ai2, αi5 = 0.5(p− 1)ai3 for i ∈ S2.

Hence the matrix A defined by (4.4) is the same as the matrix A defined by (6.3) and
hence A is a nonsingular M-matrix. Moreover, the matrix D defined by (4.5) becomes

D := −diag(qa11, · · · , qaN11)− (γij)i,j∈S1
(6.8)

which is a nonsingular M-matrix too by Lemma 2.1 and the note below it as ai1 < 0 for
all i ∈ S1. In other words, Assumption 4.3 is satisfied too. To Apply Theorem 5.4, we
choose β by (4.8) so condition (4.9) is satisfied by Remark 4.4. Compute θi’s by (4.6).
Conditions (4.11) and (5.24) are satisfied of course as αi3 = 0 for all i ∈ S. If we further
impose the following bounds

ai3 <
2qβ

p(p− 1)(2q − p)θi
, i ∈ S2, (6.9)

then condition (4.12) is satisfied as well. We can therefore conclude by Theorem 5.4 that
the perturbed system (6.4) is both pth moment and almost surely exponentially stable
provided the perturbation parameters ai3 satisfy conditions (6.7) and (6.9).

6.2 Case 2

Assume that for each i ∈ S1, there is a number ai1 < 0 such that

xTF (x, t, i) ≤ ai1|x|2 (6.10)

while for each i ∈ S2, there ia a pair of numbers ai1 ∈ R and ai2 > 0 such that

xTF (x, t, i) ≤ ai1|x|2 − ai2|x|q−p+2 (6.11)

for (x, t) ∈ Rn ×R+. We also assume that the matrix A defined by (6.3) is a nonsingular
M-matrix. Suppose that equation (6.1) is subject to a stochastic perturbation dependent
on the delay state x(t− τ) and the perturbed system is described by

dx(t) = F (x(t), t, r(t))dt+G(x(t− τ), t, r(t))dB(t), (6.12)

and the perturbation has its structured difference in the sense that

|G(y, t, i)| ≤ ai3|y|2, i ∈ S1 (6.13)
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and
|G(y, t, i)| ≤ ai3|y|q−p+2, i ∈ S2 (6.14)

for (y, t) ∈ Rn × R+, where ai3 > 0 for all i ∈ S. Once again, we wish to obtain upper
bounds on ai3’s for the perturbed system (6.12) to remain stable. Noting that for i ∈ S1

xTF (x, t, i) + 0.5(q − 1)|G(y, t, i)|2
≤ ai1|x|2 + 0.5(q − 1)ai3|y|2

while for i ∈ S2

xTF (x, t, i) + 0.5(p− 1)|G(y, t, i)|2
≤ ai1|x|2 − ai2|x|q−p+2 + 0.5(p− 1)ai3|y|q−p+2,

we see that Assumption 4.2 is satisfied with

αi1 = 0, αi2 = ai1 for i ∈ S;

αi3 = 0.5(q − 1)ai3 for i ∈ S1;

αi3 = 0, αi4 = ai2, αi5 = 0.5(p− 1)ai3 for i ∈ S2.

It is also easy to see that Assumption 4.3 is satisfied with A = A defined by (6.3) and D
is the same as defined by (6.8). To apply Theorems 5.1 and 5.3, we again choose β by
(4.8) so condition (4.9) is satisfied by Remark 4.4. Compute θi’s and by ηi’s by (4.6) and
(4.7), respectively. Conditions (4.10)–(4.12) yield the following bounds

ai3 ≤
2

p(q − 1)θi
and ai3 <

2β

(q − 1)(2q − p)ηi
for i ∈ S1 (6.15)

while

ai3 <
2qβ

p(p− 1)(2q − p)θi
for i ∈ S2. (6.16)

By Theorems 5.1, 5.3 and 5.4, we can therefore conclude that if the perturbed parameters
ai3 satisfy (6.15) and (6.16), then for any initial data ξ ∈ C([−τ, 0];Rn), the solution x(t)
of the SDDE (6.12) has the properties that

∫∞

0
E|x(t)|qdt < ∞ and limt→∞ |x(t)| = 0 a.s.

If, moreover, condition (6.15) is slightly strengthened by

ai3 < min
{ 2

p(q − 1)θi
,

2β

(q − 1)(2q − p)ηi

}

for i ∈ S1, (6.17)

the SDDE (6.12) is both pth moment and almost surely exponentially stable.

Example 6.1 Let us now return to the population system discussed in Section 3, namely
the hybrid SDDE (3.9) which is the stochastically perturbed system of equation (3.10).
This is a special example of Case 2 discussed above. Here we have S = {1, 2} with
S1 = {1} and S2 = {2} and Γ given by (3.8). Moreover, we have the following system
parameters:

p = 2, q = 4,

a11 = −2, a21 = 1, a22 = 2,

a13 = σ2
1, a23 = σ2

2.
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We then have

A =

(

5 −1
−6 4

)

with A−1 =
1

14

(

4 1
6 5

)

.

So A is a nonsingular M-matrix. We can then further compute

θ1 = 5/14, θ2 = 11/14, D = 9, d̃ = 1/9,

γ̃ = 6, β = 66/35, η1 = 22/105.

Conditions (6.16) and (6.17) become

σ1 < 0.966, σ2 < 1.265. (6.18)

We hence conclude that under condition (6.18), the SDDE (3.9) is both mean square and
almost surely exponentially stable.

To perform computer simulations, we set σ1 = 0.8, σ2 = 1.2, τ = 0.1 and let the
initial data ξ(t) = 2 + sin(t) on t ∈ [−0.1, 0] and r(0) = 2. The following computer
simulations (Figure 6.1) support our theoretical results clearly.
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1
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2
.0

t

x(
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Figure 6.1: The computer simulations of the sample paths of the Markov chain and the
solution of equation (3.9) with the parameters and initial data specified above using the

Euler–Maruyama method with step size 10−3.

6.3 Case 3

In this case we will discuss the robust boundedness. Assume that

xTF (x, t, i) ≤ ai1 − ai2|x|2, i ∈ S1 (6.19)

and
xTF (x, t, i) ≤ ai1 − ai2|x|q−p+2, i ∈ S2, (6.20)
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where all ai1 and ai2 are positive numbers. Suppose that the perturbed system is described
by

dx(t) = F (x(t), t, r(t))dt+G(x(t− τ), t, r(t))dB(t), (6.21)

and the perturbation coefficients satisfy

|G(y, t, i)| ≤ ai3|y|2, i ∈ S1 (6.22)

and
|G(y, t, i)| ≤ ai3|y|2 + ai4|y|q−p+2, i ∈ S2, (6.23)

where ai3 and ai4 are all nonnegative numbers. We aim to obtain upper bounds on them
so that the perturbed system (6.21) remains asymptotically bounded. It follows from
these conditions that for i ∈ S1

xTF (x, t, i) + 0.5(q − 1)|G(y, t, i)|2
≤ ai1 − ai2|x|2 + 0.5(q − 1)a13|y|2; (6.24)

while for i ∈ S2

xTF (x, t, i) + 0.5(p− 1)|G(y, t, i)|2
≤ ai1 − ai2|x|q−p+2 + 0.5(p− 1)ai3|y|2
+ 0.5(p− 1)ai4|y|q−p+2. (6.25)

If we compare these with (4.2) and (4.3) in Assumption 4.2, we might attempt to have

αi2 = −ai2 for i ∈ S1 and 0 for i ∈ S2.

Consequently, the matrix A defined by (4.4) becomes

A = diag(pa12, · · · , paN12, 0, · · · , 0)− Γ.

But A might not be a nonsingular M-matrix. To avoid this, we can simply choose a pair
of constants δ1 > 0 and δ2 ∈ (0, 1) and re-arrange (6.25) as

xTF (x, t, i) + 0.5(p− 1)|G(y, t, i)|2
≤ αi1 − δ1|x|2 + 0.5(p− 1)ai3|y|2
− (1− δ2)ai2|x|q−p+2 + 0.5(p− 1)ai4|y|q−p+2, (6.26)

where
αi1 = sup

u≥0

(

ai1 + δ1u
2 − δ2ai2u

q−p+2
)

.

As a result, Assumption 4.2 is satisfied with

αi1 = ai1, αi2 = −ai2, αi3 = 0.5(q − 1)ai3

for i ∈ S1 while

αi2 = −δ1, αi3 = 0.5(p− 1)ai3,

αi4 = (1− δ2)ai2, αi5 = 0.5(p− 1)ai4

for i ∈ S2 (and αi1 has been defined above). Hence, the matrices A and D in Assumption
4.3 become

A = diag(pa12, · · · , paN12, δ1, · · · , δ1)− Γ
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and
D = diag(qa12, · · · , qaN12)− (γij)i,j∈S1

.

By Lemma 2.1 and the note below it, both A and D are nonsingular M-matrices. In other
words, Assumption 4.3 is satisfied too. To apply Theorem 4.5, we once again choose β by
(4.8) so condition (4.9) is satisfied by Remark 4.4. Compute θi’s and by ηi’s by (4.6) and
(4.7), respectively. Conditions (4.10)–(4.12) then become

ai3 ≤
2

p(q − 1)θi
, ai3 <

2β

(q − 1)(2q − p)ηi
for i ∈ S1 (6.27)

and

ai3 ≤
2

p(p− 1)θi
, ai4 <

2qβ

p(p− 1)(2q − p)θi
for i ∈ S2. (6.28)

By Theorems 4.5, we can therefore conclude that if the perturbed parameters αi3 satisfy
(6.15) and (6.16), then for any initial data ξ ∈ C([−τ, 0];Rn), the solution x(t) of the
SDDE (6.21) has properties (4.13) and (4.14).

Example 6.2 Consider a scalar stochastically perturbed hybrid system

dx(t) = F (x(t), t, r(t))dt+G(x(t− τ), t, r(t))dB(t), (6.29)

where B(t) is a scalar Brownian, r(t) is a Markov chain with the state space S = {1, 2, 3, 4}
and the generator

Γ =









−8 1 4 3
1 −6 2 3
1 1 −3 1
1 1 0 −2









,

and the coefficients are defined by

F (x, t, i) =















cos t− 2x, i = 1,
sin t− 3x, i = 2,
cos t− 2x3, i = 3,
sin t− 3x3, i = 4

and G(y, t, i) =















σ1y, i = 1,
σ2y, i = 2,
σ3y

2, i = 3,
σ4y

2, i = 4.

Let S1 = {1, 2}, S2 = {3, 4} and p = 2, q = 4. It is straightforward to show that
conditions (6.19), (6.20), (6.22) and (6.23) are satisfied with

a12 = 1.9, a22 = 2.9, a32 = 1.9, a42 = 2.9,

a13 = σ2
1, a23 = σ2

2, a33 = 0, a43 = 0,

a34 = σ2
3, a44 = σ2

4,

and ai1’s are all positive numbers but their values are of no further use so we do not
specify them. Choose two free parameters δ1 = 10 and δ2 = 0.1. Then

A =









11.8 −1 −4 −3
−1 11.8 −2 −3
−1 −1 13 −1
−1 −1 0 12









and D =

(

15.6 −1
−1 17.6

)

.
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Noting that

A−1 =









0.091 0.013 0.030 0.028
0.011 0.089 0.017 0.027
0.009 0.009 0.081 0.011
0.009 0.009 0.004 0.088









and

D−1 =

(

0.064 0.004
0.004 0.057

)

,

we see, by Lemma 2.1, that both A and D are nonsingular M-matrices. We can then
compute

θ1 = 0.162, θ2 = 0.144, θ3 = 0.110, θ4 = 0.110,

d̃ = 0.068, γ̃ = 2, β = 0.331, η1 = 0.023, η2 = 0.020.

Conditions (6.27) and (6.28) then become

σ1 ≤ 1.264, σ2 ≤ 1.356, σ3 < 1.416, σ4 < 1.416. (6.30)

We can therefore conclude that if the perturbed parameters σi satisfy (6.30), then for any
initial data ξ ∈ C([−τ, 0];R), the solution x(t) of the SDDE (6.29) has the properties that

lim sup
t→∞

1

t

∫ t

0

E|x(s)|4ds ≤ K1,

and
lim sup
t→∞

E|x(t)|2 ≤ K2,

where K1 and K2 are positive constants independent of the initial data ξ.

To perform a computer simulation for the second moment of the solution, we set
σ1 = 1, σ2 = σ3 = σ4 = 1.3, τ = 0.1 and let the initial data ξ(t) = 1+sin(t) on t ∈ [−0.1, 0]
and r(0) = 1. The computer simulations in Figure 6.2 show a single sample path of the
Markov chain and that of the solution, from which we can see how the Markov chain
jumps from one mode to another and also the solution evolves in a bounded domain. To
illustrate the boundedness of the second moment, we perform 200-sample-path simulations
and then compute the average of their squares to form the approximation of E|x(t)|2. This
is showed in Figure 6.3.

7 Conclusion

To distinguish the difference in structures of the underlying hybrid system, we have con-
sidered the case where the space of modes, S, can be divided into two subspaces, S1 and
S2, such that the system is described by a same type of SDDEs for modes in S1 but by a
different type of SDDEs for modes in S2. Taking these different structures into account
we have successfully developed our new theory on the structured robust stability and
boundedness for highly nonlinear hybrid SDDEs. A significant amount of new techniques
has been developed to deal with the difficulties due to the structured difference and those
without the linear growth condition. The proofs of Theorems 4.5 and 5.3 represent typ-
ically our new techniques. We have also discussed three special cases and two examples
plus some computer simulations to illustrate our theory.
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Figure 6.2: The computer simulations of the sample paths of the Markov chain and the
solution of equation (6.29) using the Euler–Maruyama method with step size 10−3.
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Figure 6.3: The computer simulation of the second moment of the solution of equation (6.29)
using the Euler–Maruyama method with step size 10−3 and sample size 200.
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