658 research outputs found

    Diaqua­(2,2′-bipyridine-6,6′-dicarboxyl­ato)nickel(II)

    Get PDF
    In the title compound, [Ni(C12H6N2O4)(H2O)2], the NiII atom (site symmetry 2) displays a distorted cis-NiN2O4 octa­hedral coordination geometry with two N atoms and two O atoms of the tetra­dentate 2,2′-bipyridine-6,6′-dicarboxyl­ate ligand in the equatorial plane and two water mol­ecules in axial positions. The complete dianionic ligand is generated by crystallographic twofold symmetry. In the crystal, a two-dimensional supra­molecular structure parallel to (001) is formed through O—H⋯O hydrogen-bond inter­actions between the coordinated water mol­ecules and the O atoms of nearby carboxyl­ate groups

    Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness 2: Oblique Collision

    Full text link
    Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC \citep{Xiong2006}. The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the MC is restored to its oblate morphology. With the decrease of MC-shock commencement interval, the shock front at 1 AU traverses MC body and is responsible for the same change trend of the latitude of the greatest geoeffectiveness of MC-shock compound. Regardless of shock orientation, shock penetration location regarding the maximum geoeffectiveness is right at MC core on the condition of very strong shock intensity. An appropriate angular difference between the initial eruption of an MC and an overtaking shock leads to the maximum deflection of the MC body. The larger the shock intensity is, the greater is the deflection angle. The interaction of MCs with other disturbances could be a cause of deflected propagation of interplanetary coronal mass ejection (ICME).Comment: 38 pages, 8 figure

    New cell separation technique for the isolation and analysis of cells from biological mixtures in forensic caseworks

    Get PDF
    Aim To isolate mucosal cells of the perpetrator in a sexual assault case from a complex mixture of his mucosal cells and the victim’s skin by micromanipulation prior to genomic analysis. Methods To capture and analyze mucosal cells we used the micromanipulation with on-chip low volume polymerase chain reaction (LV-PCR). Consensus DNA profiles were generated from 5 replicate experiments. Results and conclusions We validated the use of micromanipulation with on-chip LV-PCR for genomic analysis of complex biological mixtures in a fatal rape case. The perpetrator’s mucosal cells were captured from nipple swabs of the victim, and a single-source DNA profile was generated from cell mixtures. These data suggest that micromanipulation with on-chip LV-PCR is an effective forensic tool for the analysis of specific cells from complex samples

    3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    Get PDF
    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1

    Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness

    Full text link
    Numerical studies have been performed to interpret the observed "shock overtaking magnetic cloud (MC)" event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a central concave and a smooth arc respectively. The compression and rotation of magnetic field serve as an efficient mechanism to cause a large geomagnetic storm. The MC is highly compressed by the the overtaking shock. Contrarily, the transport time of incidental shock influenced by the MC depends on the interval between their commencements. Maximum geoeffectiveness results from that when the shock enters the core of preceding MC, which is also substantiated to some extent by a corresponding simplified analytic model. Quantified by DstDst index, the specific result gives that the geoeffectiveness of an individual MC is largely enhanced with 80% increment in maximum by an incidental shock.Comment: 45 pages, 9 figure

    Cell-Free Networking for Integrated Data and Energy Transfer: Digital Twin based Double Parameterized DQN For Energy Sustainability

    Get PDF
    Cell-free networking enables full cooperation among distributed access points (APs). This paper focuses on reducing the long-term energy consumption of a cell-free network in the downlink integrated data and energy transfer (IDET) for achieving energy sustainability. The resultant design includes both the AP classification on a large time-scale and the beamforming of the APs on a small time-scale in order to simultaneously satisfy the IDET requirements of data users and energy users. For dealing with binary integer actions (AP classification) and continuous actions (beamforming) together, we innovatively propose a stable double parameterized deep-Q-network (DP-DQN), which can be enhanced by a digital twin (DT) running in the intelligent core processor (ICP) so as to achieve faster and more stable convergence. Therefore, the cell-free network may avoid suffering from performance fluctuation during the training process. The simulation results demonstrate that our DP-DQN exceeds in convergence compared to other benchmarks while guaranteeing an optimal solution
    corecore