1,357 research outputs found

    Shaping electron wave functions in a carbon nanotube with a parallel magnetic field

    Get PDF
    A magnetic field, through its vector potential, usually causes measurable changes in the electron wave function only in the direction transverse to the field. Here we demonstrate experimentally and theoretically that in carbon nanotube quantum dots, combining cylindrical topology and bipartite hexagonal lattice, a magnetic field along the nanotube axis impacts also the longitudinal profile of the electronic states. With the high (up to 17T) magnetic fields in our experiment the wave functions can be tuned all the way from "half-wave resonator" shape, with nodes at both ends, to "quarter-wave resonator" shape, with an antinode at one end. This in turn causes a distinct dependence of the conductance on the magnetic field. Our results demonstrate a new strategy for the control of wave functions using magnetic fields in quantum systems with nontrivial lattice and topology.Comment: 5 figure

    A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density

    Get PDF
    SynGAP is a Ras/Rap GTPase-activating protein (GAP) that is a major constituent of postsynaptic densities (PSDs) from mammalian forebrain. Its α1 isoform binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and can occupy as many as 15% of these PDZ domains. We present evidence that synGAP-α1 regulates the composition of the PSD by restricting binding to the PDZ domains of PSD-95. We show that phosphorylation by Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII) and Polo-like kinase-2 (PLK2) decreases its affinity for the PDZ domains by several fold, which would free PDZ domains for occupancy by other proteins. Finally, we show that three critical postsynaptic signaling proteins that bind to the PDZ domains of PSD-95 are present in higher concentration in PSDs isolated from mice with a heterozygous deletion of synGAP

    Bayesian Classification and Regression Trees for Predicting Incidence of Cryptosporidiosis

    Get PDF
    Background Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia. Methodology/Principal Findings We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects. Conclusions/Significance A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control

    Inhibition of CDK9 activity compromises global splicing in prostate cancer cells

    Get PDF
    Cyclin-dependent kinase 9 (CDK9) phosphorylates RNA polymerase II to promote productive transcription elongation. Here we show that short-term CDK9 inhibition affects the splicing of thousands of mRNAs. CDK9 inhibition impairs global splicing and there is no evidence for a coordinated response between the alternative splicing and the overall transcriptome. Alternative splicing is a feature of aggressive prostate cancer (CRPC) and enables the generation of the anti-androgen resistant version of the ligand-independent androgen receptor, AR-v7. We show that CDK9 inhibition results in the loss of AR and AR-v7 expression due to the defects in splicing, which sensitizes CRPC cells to androgen deprivation. Finally, we demonstrate that CDK9 expression increases as PC cells develop CRPC-phenotype both in vitro and also in patient samples. To conclude, here we show that CDK9 inhibition compromises splicing in PC cells, which can be capitalized on by targeting the PC-specific addiction androgen receptor.Peer reviewe

    Paraneoplastic thrombocytosis in ovarian cancer

    Get PDF
    <p>Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that platelets play in abetting cancer growth are unclear.</p> <p>Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse models of epithelial ovarian cancer were used to explore the underlying mechanisms of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.</p> <p>Results: Thrombocytosis was significantly associated with advanced disease and shortened survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated in patients who had thrombocytosis as compared with those who did not. In mouse models, increased hepatic thrombopoietin synthesis in response to tumor-derived interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor growth and angiogenesis.</p> <p>Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have therapeutic potential. </p&gt

    Reciprocal genomic evolution in the ant-fungus agricultural symbiosis

    Get PDF
    The attine ant–fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal cultivars. We show that ant subsistence farming probably originated in the early Tertiary (55–60 MYA), followed by further transitions to the farming of fully domesticated cultivars and leaf-cutting, both arising earlier than previously estimated. Evolutionary modifications in the ants include unprecedented rates of genome-wide structural rearrangement, early loss of arginine biosynthesis and positive selection on chitinase pathways. Modifications of fungal cultivars include loss of a key ligninase domain, changes in chitin synthesis and a reduction in carbohydrate-degrading enzymes as the ants gradually transitioned to functional herbivory. In contrast to human farming, increasing dependence on a single cultivar lineage appears to have been essential to the origin of industrial-scale ant agriculture

    Novel Protein Disulfide Isomerase Inhibitor with Anticancer Activity in Multiple Myeloma

    Get PDF
    Multiple myeloma cells secrete more disulfide bond–rich proteins than any other mammalian cell. Thus, inhibition of protein disulfide isomerases (PDI) required for protein folding in the endoplasmic reticulum (ER) should increase ER stress beyond repair in this incurable cancer. Here, we report the mechanistically unbiased discovery of a novel PDI-inhibiting compound with antimyeloma activity. We screened a 30,355 small-molecule library using a multilayered multiple myeloma cell–based cytotoxicity assay that modeled disease niche, normal liver, kidney, and bone marrow. CCF642, a bone marrow–sparing compound, exhibited a submicromolar IC50 in 10 of 10 multiple myeloma cell lines. An active biotinylated analog of CCF642 defined binding to the PDI isoenzymes A1, A3, and A4 in MM cells. In vitro, CCF642 inhibited PDI reductase activity about 100-fold more potently than the structurally distinct established inhibitors PACMA 31 and LOC14. Computational modeling suggested a novel covalent binding mode in active-site CGHCK motifs. Remarkably, without any further chemistry optimization, CCF642 displayed potent efficacy in an aggressive syngeneic mouse model of multiple myeloma and prolonged the lifespan of C57BL/KaLwRij mice engrafted with 5TGM1-luc myeloma, an effect comparable to the first-line multiple myeloma therapeutic bortezomib. Consistent with PDI inhibition, CCF642 caused acute ER stress in multiple myeloma cells accompanied by apoptosis-inducing calcium release. Overall, our results provide an illustration of the utility of simple in vivo simulations as part of a drug discovery effort, along with a sound preclinical rationale to develop a new small-molecule therapeutic to treat multiple myeloma

    Binding of synGAP to PDZ Domains of PSD-95 is Regulated by Phosphorylation and Shapes the Composition of the Postsynaptic Density

    Get PDF
    SynGAP is a Ras/Rap GTPase-activating protein (GAP) present in high concentration in postsynaptic densities (PSDs) from mammalian forebrain where it binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95. We show that phosphorylation of synGAP by Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII) decreases its affinity for the PDZ domains as much as 10-fold, measured by surface plasmon resonance. SynGAP is abundant enough in postsynaptic densities (PSDs) to occupy about one third of the PDZ domains of PSD-95. Therefore, we hypothesize that phosphorylation by CaMKII reduces synGAP′s ability to restrict binding of other proteins to the PDZ domains of PSD-95. We support this hypothesis by showing that three critical postsynaptic signaling proteins that bind to the PDZ domains of PSD-95 are present at a higher ratio to PSD-95 in PSDs isolated from synGAP heterozygous mice

    What are the health benefits of active travel? A systematic review of trials and cohort studies.

    Get PDF
    BACKGROUND: Increasing active travel (primarily walking and cycling) has been widely advocated for reducing obesity levels and achieving other population health benefits. However, the strength of evidence underpinning this strategy is unclear. This study aimed to assess the evidence that active travel has significant health benefits. METHODS: The study design was a systematic review of (i) non-randomised and randomised controlled trials, and (ii) prospective observational studies examining either (a) the effects of interventions to promote active travel or (b) the association between active travel and health outcomes. Reports of studies were identified by searching 11 electronic databases, websites, reference lists and papers identified by experts in the field. Prospective observational and intervention studies measuring any health outcome of active travel in the general population were included. Studies of patient groups were excluded. RESULTS: Twenty-four studies from 12 countries were included, of which six were studies conducted with children. Five studies evaluated active travel interventions. Nineteen were prospective cohort studies which did not evaluate the impact of a specific intervention. No studies were identified with obesity as an outcome in adults; one of five prospective cohort studies in children found an association between obesity and active travel. Small positive effects on other health outcomes were found in five intervention studies, but these were all at risk of selection bias. Modest benefits for other health outcomes were identified in five prospective studies. There is suggestive evidence that active travel may have a positive effect on diabetes prevention, which may be an important area for future research. CONCLUSIONS: Active travel may have positive effects on health outcomes, but there is little robust evidence to date of the effectiveness of active transport interventions for reducing obesity. Future evaluations of such interventions should include an assessment of their impacts on obesity and other health outcomes
    • …
    corecore