
 

Shaping Electron Wave Functions in a Carbon Nanotube with a Parallel Magnetic Field

M. Margańska,1 D. R. Schmid,2 A. Dirnaichner,2 P. L. Stiller,2 Ch. Strunk,2 M. Grifoni,1 and A. K. Hüttel2,*
1Institute for Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany

2Institute for Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany

(Received 28 March 2018; revised manuscript received 25 January 2019; published 26 February 2019)

A magnetic field, through its vector potential, usually causes measurable changes in the electron wave
function only in the direction transverse to the field. Here, we demonstrate experimentally and theoretically
that, in carbon nanotube quantum dots combining cylindrical topology and bipartite hexagonal lattice,
a magnetic field along the nanotube axis impacts also the longitudinal profile of the electronic states. With
the high (up to 17 T) magnetic fields in our experiment, the wave functions can be tuned all the way from a
“half-wave resonator” shape with nodes at both ends to a “quarter-wave resonator” shape with an antinode
at one end. This in turn causes a distinct dependence of the conductance on the magnetic field. Our results
demonstrate a new strategy for the control of wave functions using magnetic fields in quantum systems
with a nontrivial lattice and topology.
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As first noticed by Aharonov and Bohm [1], when a
charged quantum particle travels in a finite electromagnetic
potential, its wave function acquires a phase whose
magnitude depends on the traveled path. For particles with
electric charge q moving along a closed path, the phase
shift φAB ¼ qΦB=h, known as the Aharonov-Bohm shift, is
expressed in terms of the magnetic flux ΦB across the
enclosed area. Because ΦB depends only on the magnitude
of the magnetic field component normal to this area’s
surface, the phase is acquired along directions transverse to
the magnetic field; see Fig. 1(a). In mesoscopic rings or
tubular structures pierced by a magnetic field, the phase
changes the quantization condition for the tangential part of
the electronic wave vector by k⊥ → k⊥ þ φAB=r (with r
being the radius of the ring or tubulus) and is at the basis
of remarkable quantum interference phenomena [2].
However, as the perpendicular components of the magnetic
vector potential commute with the parallel component of
the momentum, a parallel magnetic field is not expected to
affect the wave function along the field.
Also in carbon nanotubes (CNTs), the electronic wave

function acquires an Aharonov-Bohm phase when a
magnetic field is applied along the nanotube axis [3];
see Fig. 1(a). The phase gives rise to resistance oscillations
in a varying magnetic flux [4]. Because it changes k⊥, it
also changes the energy EðkÞ of an electronic state through
its dependence on the wave vector k ¼ (kk; k⊥ðBkÞ). Such
a magnetic field dependence of the energies has been
observed through beatings in Fabry-Perot patterns [5], or in
the characteristic evolution of excitation spectra of CNT
quantum dots in the sequential tunneling [6–9] and Kondo
[10–15] regimes.
In this Letter, we show that the combination of the

bipartite honeycomb lattice, the cylindrical topology

of the nanotubes, and the confinement in the quantum
dot intertwines the usually separable parallel and transverse
components of the wave function. This leads to unusual
tunability of the wave function in the direction parallel to
the magnetic field. Experimentally, it manifests in a
pronounced variation of the conductance with the
magnetic field, arising from the changes of the wave
function amplitude near the tunnel contacts between
the electrostatically defined quantum dot and the rest of
the CNT.
Similar to graphene, in CNTs the honeycomb lattice

gives rise to two nonequivalent Dirac points K and K0 (also
known as valleys). The valley and spin degrees of freedom
characterize the four lowermost CNT subbands; see
Fig. 1(c). Our measurements display (i) a conductance
rapidly vanishing in a magnetic field for transitions
associated with the K valley, and (ii) an increase and then
a decrease of the conductance for K0-valley transitions as
the axial field is varied from 0 up to 17 T. Similar behavior
can be found in results on other CNT quantum dots; see,
e.g., Figs. 1(c) and S9 of [9] or Fig. 2 of [16]. To our
knowledge, no microscopic model explaining it has yet
been proposed. Our calculation captures this essential
difference between the K and K0 valley states.
Dispersion relation of long CNTs—In CNTs, the eigen-

states are spinors in the bipartite honeycomb lattice space,
solving the Dirac equation; Eq. (2) below. The resulting

dispersion is EðkÞ¼�ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2kþκ2⊥

q
[see Fig. 1(c)], where

the κ⊥=k ¼ k⊥=k − τK⊥=k are wave vectors relative to the
graphene Dirac points K (τ¼1) and K0 ¼ −K (τ ¼ −1).
The cylindrical geometry restricts the values of the

transverse momentum k⊥ through the boundary condition
ΨðRþ CÞ ¼ ΨðRÞ, with C being the wrapping vector of
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the CNT, generating transverse subbands. Furthermore,
curvature causes a chirality-dependent offset τΔkc of the
Dirac points, opening a small gap in nominally metallic
CNTs with κ⊥ ¼ 0, as well as a spin-orbit coupling induced
shift σkSO of the transverse momentum [17–19] (σ ¼ �1
denotes the projection of the spin along the CNT axis).
As shown in Fig. 1(c), the latter removes spin degeneracy
of the transverse subbands. When an axial magnetic
field is applied, the Aharonov-Bohm phase further
modifies k⊥. The energy E(kk; k⊥ðBkÞ) of an infinite
CNT then follows again from the Dirac equation under
the replacements

k⊥ → k⊥ þ φAB

r
þ σΔkSO þ τΔkc⊥;

kk → kk þ τΔkck; ð1Þ

the addition of a Zeeman term μBσBk, and a field-
independent energy shift due to the spin-orbit coupling
[17–19]. In CNT quantum dots with lengths of a few
hundred nanometers, the longitudinal wave vector
becomes quantized, leading to discrete bound states [dots
in Fig. 1(c)]. The magnetic field dependence of E for two
bound states belonging to different valleys is shown in
Fig. 1(d) for fixed kk. A characteristic evolution, distinct for
the two valleys, is observed.
Magnetospectrum of a CNT quantum dot—Figure 1(b)

shows a schematic of our device: a suspended CNT grown

in situ over rhenium leads [20,21]. Tuning the back gate
voltage, we can explore both hole and electron conduction.
As typical for growth over rhenium or platinum electrodes,
the metal-CNT contacts are transparent, and the CNT is
effectively p doped near them. In the electron conduction
regime, gating then causes two p-n junctions within the
CNT that, as tunnel barriers, lead to Coulomb blockade
[6,22,23]. We can clearly identify the gate voltage region
corresponding to 0 ≤ N ≤ 1 trapped conduction band
electrons; an electron is here confined to a fraction of
the 700 nm metal contact distance, with the rest of the CNT
acting as barriers and leads. From the spectrum,
we estimate a confinement length of L ∼ 400 nm or
L ∼ 240 nm, depending on the method used (see Sec. III
of the Supplemental Material [24] for details).
Figure 2(a) shows the stability diagram of the CNT in

this gate voltage region. The resonance lines correspond to
the single particle energies of the lowest discrete states of
the quantum dot [19]. Two closely spaced sets α and β
of two Kramers doublets are visible. By fixing Vgate and
sweeping a magnetic field, the evolution of the states in

FIG. 2. (a) Zero magnetic field differential conductance
dI=dVbias of a CNT quantum dot with 0 ≤ N ≤ 1 conduction
band electrons. Two pairs, α and β, of conductance lines, each
line representing a Kramers doublet, are visible. (b) dI=dVbias for
constant Vgate ¼ 0.675 V and varying jBkj ≤ 1.5 T. The Kramers
doublets split at a finite field into four states for both α and β. The
spin and valley of the α states for Bk ≫ 0.5 T are indicated.
(c) Differential conductance at the same Vgate, now for Bk up to
17 T. The four visible lines correspond to K0 states in α and β;
the K lines fade out fast. (d) Calculated conductance, using
the reduced density matrix technique and assuming field-
independent tunneling coupling of all states to the leads. In
contrast to the measurement, both K and K0 valley lines clearly
persist at a high magnetic field.

(a)

KK'

Re

700 nm

Re

SiO2

p++ Si

B||(b)

B||

(c) B
||

B||(d)

BB||
K'

K

K' K

FIG. 1. (a) Electrons circulating in closed orbits acquire an
Aharonov-Bohm phase proportional to the enclosed magnetic
flux. (b) Schematic of a suspended CNT device with its
embedded quantum dot (shaded green) and a magnetic field
parallel to the nanotube. (c) Dirac cones of the graphene
dispersion relation. Blue and red lines indicate the lowermost
transverse subbands forming in a CNT. Spin degeneracy is lifted
by the spin-orbit coupling. Quantized kk values due to a finite
CNT length are marked with dots; Bk ¼ 0. (d) An axial magnetic
field changes k⊥ via the Aharonov-Bohm effect, shifting the 1D
subbands across the Dirac cones.
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the field can be recorded; see Figs. 2(b) and 2(c). The
Kramers degeneracy is then lifted, revealing four states in
each set.
Low field spectra similar to Fig. 2(b) have been reported

by several groups [6–9] and are now well understood.
A quantitative fit can be obtained by a model Hamiltonian
for a single longitudinal mode, including valley mixing
due to disorder or backscattering at the contact (see [8]
and Sec. VI of the Supplemental Material [24]). For
jBkj > 0.5 T, valley mixing is not relevant and the evolu-
tion of the spectral lines can be deduced from the Dirac
equation; Eq. (2) below (see Sec. III of the Supplemental
Material [24] for needed modifications). The valley and
spin can be assigned to each excitation at higher fields;
see Fig. 2(b).
We have traced the single particle states from Fig. 2(b)

up to a high magnetic field of Bk ¼ 17 T. As is visible in
Figs. 2(b) and 2(c), the four K lines evolve upwards in
energy. They are comparatively weak, fading out already
below 1 T. In contrast, the four K0 conductance lines evolve
initially downwards, gaining in strength, but then turn
upwards above 6 T and fade. The presence of both weak K
and strong K0 transitions in Fig. 2(c) at the same bias
excludes the possibility of a trivial dependence of tunneling
rates on the bias voltage. The model calculation of the
conductance in Fig. 2(d), assuming a field-independent kk,
successfully follows the peak positions but clearly fails to
reproduce the intensity variations, and especially the
suppression of K lines already at low fields.
We show in the following that this effect results from

the Bk dependence of the wave functions’ longitudinal
profile. When the field is applied perpendicular to the CNT
axis, no such effect occurs and all excitation lines are
present at almost constant strength; see Fig. S-10 in the
Supplemental Material [24], where this is experimentally
reproduced over a wide gate voltage and electron number
range [24].
Boundary conditions on bipartite lattices—The spatial

profile of the wave functions ψðrÞ of a finite quantum
system is determined by the boundary conditions and the
resulting quantization of the wave vector. In unipartite
lattices (e.g., monoatomic chains), the hard-wall boundary
conditions are ψðRLÞ ¼ 0 ¼ ψðRRÞ, where RL=R are the
lattice vectors of the first site beyond the left and right ends
of the chain, respectively. The linear combinations of Bloch
states satisfying these conditions create standing waves
with nodes at RL and RR, like those of a half-wave
resonator. Their wave vectors are quantized according to
the familiar condition kk ¼ nπ=L, where L is the length of
the chain and n ∈ N.
The situation is more complex in bipartite lattices, as in

the CNT shown in Fig. 3. The eigenstates are spinors in
sublattice space Ψ† ¼ ðψ†

A;ψ
†
BÞ and, near the Dirac points,

obey the Dirac equation

ℏvF

�
0 eiτθðτκ⊥ − iκkÞ

e−iτθðτκ⊥ þ iκkÞ 0

��
ψkA

ψkB

�

¼ E
�
ψkA

ψkB

�
; ð2Þ

where vF is the Fermi velocity, and θ is the CNT chiral
angle. They have the formΨk ¼ wðeiηðkÞψkA þ e−iηðkÞψkBÞ,
with w being a normalization factor, meaning that there is a
phase shift of 2ηðkÞ ¼ −τ arctanðκk=κ⊥Þ þ τθ between the
two sublattice wave functions ψkA and ψkB. On the A
atoms, the phase is advanced by ηðkÞ with respect to the
plane wave part of the Bloch state; on the B atoms, it is
retarded. This is illustrated in Fig. 3(a), in which the real
part of the plane wave eikf ·r is plotted in the background,
and the real part of the complete Bloch function ΨkfðrÞ at
each atomic position is shown as the filling of the white
(sublattice A) and black (sublattice B) circles.
Standing waves in a finite CNT are formed by

appropriate linear combinations of forward [f] and back-
ward [b] propagating waves of the same energy; see
Fig. 3(b). A specific combination of Bloch states Ψ ¼
cfΨkf þ cbΨkb may satisfy the boundary condition
ψAðRLÞ ¼ 0; but then, in general, ψBðRLÞ ≠ 0. The
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FIG. 3. (a) Bloch function ψkf in a (6,3) infinite CNT calculated
at the atomic positions (filling of white-rimmed circles for the A
sublattice, and black-rimmed for B). The background shows a
forward-propagating [f] plane wave with momentum kf.
(b) Level diagram corresponding to forward [f] and backward
[b] propagating states in the K’ valley. Standing waves in a finite
CNT are composed of such states from the opposite sides of a
Dirac cone at the same energy. (c) Left end of a (6,3) chiral CNT.
The solid-drawn atoms and bonds belong to the quantum dot,
and the faint ones belong to the tunneling region. The calculated
amplitude of the energy eigenstate formed by the superposition
of ψkf and ψkb (circle filling/atom coloring) approaches zero
towards the left end on the A atoms only.

PHYSICAL REVIEW LETTERS 122, 086802 (2019)

086802-3



counterpropagating Bloch waves interfering destructively
on A remain finite on B because they are superposed with
different phases; see Fig. 3(c). There is no nontrivial
superposition with nodes at both ends for both sublattice
components. Thus, the boundary conditions for bipartite
lattices are either ψAðRLÞ ¼ 0 ¼ ψBðRRÞ or ψAðRRÞ ¼
0 ¼ ψBðRLÞ, depending on the sublattice to which the
majority of the relevant edge atoms belongs [35–37]. The
superposition of forward and backward moving Bloch
states with �κk and the same τκ⊥, together with the
bipartite boundary conditions, leads to the unusual
quantization condition [35,36,38]

e2iκkL¼! e−2iηðkÞeiτθ ¼ τκ⊥ þ iκk
τκ⊥ − iκk

: ð3Þ

Because Eq. (3) couples the transverse and the longi-
tudinal directions, it can be seen as a cross-quantization
condition. It implies that, in an axial field, also kk
depends on Bk.
The solutions of Eq. (3) are plotted as colored lines in

Fig. 4(a). For comparison, the gray lines parallel to the k⊥
axis correspond to the familiar half-wave solutions. The
envelope wave function on the A sublattice is also sketched;
the B counterpart is its mirror image. When kk is close to a
multiple of π=L (for large Bk), the wave function has the
standard half-wave shape with a node at each end. At low
field, the profile on each sublattice is close to a quarter-
wave, with an antinode at the corresponding uncon-
strained end.
Figure 4(b) shows the calculated wave function ampli-

tudes for the lowest mode (n ¼ 1) jψ1τðxkÞj on the A and B

sublattices of a (15,3) CNT with L ¼ 121 nm. They were
obtained by direct diagonalization of a tight-binding
Hamiltonian on a finite lattice, with four valence orbitals
per atom (for clarity without spin dependence) [17,18].
The shapes follow closely the expectations based on our
analysis of Eq. (3).
Fading of the differential conductance—To explain the

fading conductance lines in Figs. 2(b) and 2(c), we account
for the Bk dependence of the longitudinal CNT wave
function in our transport calculations. This implies a Bk
dependent tunneling amplitude, given by the overlap
between the CNT and lead wave functions in the contact
region. In the single electron regime of the experiment,
tunneling is weak and the tunneling amplitude is to a good
approximation determined by the value of the CNT wave
function at the quantum dot ends. The tunnel coupling at
the left (L) contact is then

ΓLμðBkÞ ¼ αL
2π

ℏ
jψBμðxk ¼ 0; BkÞj2; ð4Þ

where μ ¼ ðn; τ; σÞ is a collective index accounting for the
mode, valley, and spin; and αL contains both the square
modulus of the lead wave function at the contact and the
lead density of states. The tunnel coupling at the right (R)
contact is obtained by replacing A ↔ B and L ↔ R. The
factors αl (l ¼ L, R) encode a possible contact asymmetry.
The differential conductance then follows from a reduced
density matrix approach to the lowest order in Γlμ [24,25].
A calculation assuming αL=αR ¼ 1=4 is shown in Fig. 5(a).
The input parameters for Eqs. (1) and (3) (nanotube radius,
length, and Δkc⊥) were obtained by fitting the measured
position of the spectral lines shown in Figs. 2(b) and 2(c) to
the spectrum of the CNTmodel Hamiltonian; see Sec. III of
the Supplemental Material [24]. The fast disappearance of
theK lines is in excellent agreement with the data plotted in

FIG. 4. (a) The first solutions of Eq. (3) in the K0 and K valleys
for a chiral CNT. The wave function envelope is sketched for
κ⊥ ¼ 0 and for large κ⊥. Dots mark the values of κk at Bk ¼ 0.
(b) Calculated amplitude of the longitudinal wave functions
ψ1τðxk; BkÞ of the K0 (top row) and K (bottom row) valley states
for a (15,3) chiral CNT with L ¼ 121 nm. Black arrows mark
jψ1τj on the B sublattice at the left end.

FIG. 5. (a) Differential conductance calculated using the cross-
quantization condition [Eq. (3)], and thus field-dependent tun-
neling couplings. The wave functions ψKðxk; BkÞ and ψK0 ðxk; BkÞ
are assumed to represent the mode n ¼ 1, with parameters
identical for both sets α and β (cf. Fig. 2) and spin independent.
(b) Three-dimensional plot of the data of Fig. 2(c), showing
clearly the variation of peak heights with Bk.
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Fig. 5(b). The suppression of K0 lines at high field is also
clearly reproduced.
In our calculations hard-wall boundary conditions were

assumed. In the experiment, though, we expect smooth
confinement due to electrostatic gating; cf. Fig. S-6 of the
Supplemental Material [24]. Hence, we have performed
numerical calculations of the CNT eigenmodes as a
function of Bk for a soft confinement; see Sec. V of the
Supplemental Material [24]. We find qualitative agreement
with the hard-wall confinement calculation. Thus, the
tunability of the longitudinal wave function with the
magnetic field occurs for smooth confinement as well.
In conclusion, our experiment can be regarded as the

complement of a scanning tunneling microscopy (STM)
measurement. In STM, the spatial profile of atomic or
molecular orbitals is obtained by scanning the tip position
over the sample. In CNT quantum dots, the contact position
is fixed, but the wave function, and thus the tunnel current,
is tuned by an axial magnetic field. We are aware of only
one other system in which such coupling has been found: a
semiconducting quantum dot with a pyramid shape [39].
The unusual tunability of the wave function shape with a
parallel magnetic field will influence all phenomena
dependent on the full spatial profile of the electronic states,
such as, e.g., electron-phonon coupling or electron-electron
interaction. Thus, the parallel magnetic field is an even
more versatile tool to investigate and control complex
quantum systems than already acknowledged.

The authors acknowledge financial support by the
Deutsche Forschungsgemeinschaft via SFB 689, SFB
1277, GRK 1570, and Emmy Noether Grant Hu 1808/1.
We also thank S. Ilani for stimulating discussions.

*andreas.huettel@ur.de
[1] Y. Aharonov and D. Bohm, Significance of electromagnetic

potentials in the quantum theory, Phys. Rev. 115, 485
(1959).

[2] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibo-
witz, Observation of h=e Aharonov-Bohm Oscillations in
Normal-Metal Rings, Phys. Rev. Lett. 54, 2696 (1985).

[3] H. Ajiki and T. Ando, Electronic states of carbon nanotubes,
J. Phys. Soc. Jpn. 62, 1255 (1993).

[4] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L.
Forró, T. Nussbaumer, and C. Schönenberger, Aharonov-
Bohm oscillations in carbon nanotubes, Nature (London)
397, 673 (1999).

[5] J. Cao, Q. Wang, M. Rolandi, and H. Dai, Aharonov-Bohm
Interference and Beating in Single-Walled Carbon-Nano-
tube Interferometers, Phys. Rev. Lett. 93, 216803 (2004).

[6] E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen,
Determination of electron orbital magnetic moments in
carbon nanotubes, Nature (London) 428, 536 (2004).

[7] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen,
Coupling of spin and orbital motion of electrons in carbon
nanotubes, Nature (London) 452, 448 (2008).

[8] T. S. Jespersen, K. Grove-Rasmussen, J. Paaske, K. Muraki,
T. Fujisawa, J. Nygård, and K. Flensberg, Gate-dependent
spin-orbit coupling in multielectron carbon nanotubes, Nat.
Phys. 7, 348 (2011).

[9] G. A. Steele, F. Pei, E. A. Laird, J. M. Jol, H. B. Meerwaldt,
and L. P. Kouwenhoven, Large spin-orbit coupling in carbon
nanotubes, Nat. Commun. 4, 1573 (2013).

[10] P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker,
L. P. Kouwenhoven, and S. De Franceschi, Orbital Kondo
effect in carbon nanotubes, Nature (London) 434, 484
(2005).

[11] J. Paaske, A. Rosch, P. Wölfle, N. Mason, C. M. Marcus,
and J. Nygard, Non-equilibrium singlet-triplet Kondo effect
in carbon nanotubes, Nat. Phys. 2, 460 (2006).

[12] A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein,
SU(2) and SU(4) Kondo effects in carbon nanotube quan-
tum dots, Phys. Rev. B 75, 241407 (2007).

[13] K. Grove-Rasmussen, S. Grap, J. Paaske, K. Flensberg, S.
Andergassen, V. Meden, H. I. Jørgensen, K. Muraki, and T.
Fujisawa, Magnetic-Field Dependence of Tunnel Couplings
in Carbon Nanotube Quantum Dots, Phys. Rev. Lett. 108,
176802 (2012).

[14] D. R. Schmid, S. Smirnov, M. Marganska, A. Dirnaichner,
P. L. Stiller, M. Grifoni, A. K. Hüttel, and C. Strunk, Broken
SU(4) symmetry in a Kondo-correlated carbon nanotube,
Phys. Rev. B 91, 155435 (2015).

[15] M. Niklas, S. Smirnov, D. Mantelli, M. Marganska, N.-V.
Nguyen, W. Wernsdorfer, J.-P. Cleuziou, and M. Grifoni,
Blocking transport resonances via Kondo many-body en-
tanglement in quantum dots, Nat. Commun. 7, 12442
(2016).

[16] V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J.
Hone, and M. Bockrath, Mott insulating state in ultraclean
carbon nanotubes, Science 323, 106 (2009).

[17] W. Izumida, K. Sato, and R. Saito, Spin-orbit interaction
in single wall carbon nanotubes: Symmetry adapted tight-
binding calculation and effective model analysis, J. Phys.
Soc. Jpn. 78, 074707 (2009).

[18] J. Klinovaja, M. J. Schmidt, B. Braunecker, and D. Loss,
Carbon nanotubes in electric and magnetic fields, Phys.
Rev. B 84, 085452 (2011).

[19] E. A.Laird, F.Kuemmeth,G. A.Steele,K.Grove-Rasmussen,
J. Nygård, K. Flensberg, and L. P. Kouwenhoven, Quantum
transport in carbon nanotubes, Rev. Mod. Phys. 87, 703
(2015).

[20] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. Dai,
Synthesis of individual single-walled carbon nanotubes on
patterned silicon wafers, Nature (London) 395, 878 (1998).

[21] J. Cao, Q. Wang, and H. Dai, Electron transport in very
clean, as-grown suspended carbon nanotubes, Nat. Mater. 4,
745 (2005).

[22] J. Park and P. L. McEuen, Formation of a p-type quantum
dot at the end of an n-type carbon nanotube, Appl. Phys.
Lett. 79, 1363 (2001).

[23] G. A. Steele, G. Gotz, and L. P. Kouwenhoven, Tunable few-
electron double quantum dots and Klein tunnelling in ultra-
clean carbon nanotubes, Nat. Nanotechnol. 4, 363 (2009).

[24] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.086802, which
includes Refs. [6–9,13–15,17–21,25–34], for a detailed

PHYSICAL REVIEW LETTERS 122, 086802 (2019)

086802-5

https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.54.2696
https://doi.org/10.1143/JPSJ.62.1255
https://doi.org/10.1038/17755
https://doi.org/10.1038/17755
https://doi.org/10.1103/PhysRevLett.93.216803
https://doi.org/10.1038/nature02425
https://doi.org/10.1038/nature06822
https://doi.org/10.1038/nphys1880
https://doi.org/10.1038/nphys1880
https://doi.org/10.1038/ncomms2584
https://doi.org/10.1038/nature03422
https://doi.org/10.1038/nature03422
https://doi.org/10.1038/nphys340
https://doi.org/10.1103/PhysRevB.75.241407
https://doi.org/10.1103/PhysRevLett.108.176802
https://doi.org/10.1103/PhysRevLett.108.176802
https://doi.org/10.1103/PhysRevB.91.155435
https://doi.org/10.1038/ncomms12442
https://doi.org/10.1038/ncomms12442
https://doi.org/10.1126/science.1165799
https://doi.org/10.1143/JPSJ.78.074707
https://doi.org/10.1143/JPSJ.78.074707
https://doi.org/10.1103/PhysRevB.84.085452
https://doi.org/10.1103/PhysRevB.84.085452
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1038/27632
https://doi.org/10.1038/nmat1478
https://doi.org/10.1038/nmat1478
https://doi.org/10.1063/1.1396318
https://doi.org/10.1063/1.1396318
https://doi.org/10.1038/nnano.2009.71
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.086802


discussion of device fabrication, the CNT spectrum, our
transport calculation, a comparison with measurements
in a perpendicular magnetic field, the calculation of wave
functions in soft confinement, and the low field minimal
model Hamiltonian and its application.

[25] S. Koller, M. Grifoni, M. Leijnse, and M. R. Wegewijs,
Density-operator approaches to transport through interact-
ing quantum dots: Simplifications in fourth-order perturba-
tion theory, Phys. Rev. B 82, 235307 (2010).

[26] S. Reinhardt, C. Butschkow, S. Geissler, A. Dirnaichner,
F. Olbrich, C. Lane, D. Schröer, and A. K. Hüttel, Lab::
Measurement—A portable and extensible framework for
controlling lab equipment and conducting measurements,
Comput. Phys. Commun. 234, 216 (2019).

[27] A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P.
Kouwenhoven, and H. S. J. van der Zant, Carbon nanotubes
as ultra-high quality factor mechanical resonators, Nano
Lett. 9, 2547 (2009).

[28] Y. A. Kasumov, A. Shailos, I. I. Khodos, V. T. Volkov, V. I.
Levashov, V. N. Matveev, S. Guéron, M. Kobylko, M.
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