224 research outputs found

    Renewable energy and economic growth hypothesis: Evidence from N-11 countries

    Get PDF
    In the recent years, the trend of environmental sustainability is rapidly increasing by adopting renewable energy resources. However, the main concern is that whether renewable energy consumption contributes to economic growth. To investigate the issue, this study analyzes renewable energy led economic growth hypothesis in the Next-11 economies over the period 1990–2020. Also, this study aims to examine the influence of industry value added, gross national expenditure, and trade openness on economic growth of these economies. Along with the second-generation panel unit root test, this study employed the nonparametric panel data approach, i.e., quantile method of moments regression. The estimated results reveal the slopes coefficients are heterogeneous and cross-sectional dependency is present in the panel. The non-parametric approach reveals that validity of renewable energy led growth hypothesis. Also, the industry value added, gross national expenditure, and trade openness are found positively affecting economic growth of these economies. The panel causality test gives indication of the two way causal association between the variables. Based on the obtained results, policy implications are also provided for governors and researchers

    Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrödinger Equation

    Get PDF
    Seeking solitary wave solutions and revealing their interactional characteristics for nonlinear evolution equations help us lot to comprehend the motion laws of the microparticles. As a local nonlinear dynamic behavior, the soliton-collision is difficult to be reproduced numerically. In this paper, the soliton-collision process in the nonlinear perturbed Schrödinger equation is simulated employing the multi-symplectic method. The multi-symplectic formulations are derived including the multi-symplectic form and three local conservation laws of the nonlinear perturbed Schrödinger equation. Employing the implicit midpoint rule, we construct a multi-symplectic scheme, which is equivalent to the Preissmann box scheme, for the nonlinear perturbed Schrödinger equation. The elegant structure-preserving properties of the multi-symplectic scheme are illustrated by the tiny maximum absolute residual of the discrete multi-symplectic structure at each time step in the numerical simulations. The effects of the perturbation strength on the soliton-collision in the nonlinear perturbed Schrödinger equation are reported in the numerical results in detail

    Adaptive behaviors can improve the system consilience of a network system

    Get PDF
    As a recently reported network property, consilience degree (CSD) indicates how well a network system integrates its topology and node activities together to serve a specific systemic goal. As is well known, many natural and man-made systems are complex networks where, besides network topology, node activity states also play an important role in determining system performance. For example, a collaborative project involving friends is more likely to succeed than one involving enemies, even though the topology of network organization is the same. The concept of CSD can quantitatively distinguish the difference between the involvement of friends and the involvement of enemies. This article reports a simulation study on the adaptive behaviors of nodes based on the selfish rule and the following-others rule, and the simulation results show that based on such adaptive behaviors of nodes, a network system will automatically evolve to a high level of system consilience. The simulation study also demonstrates that a high level of system consilience resulting from adaptive behaviors will contribute to increased system resistance to external disturbances. The generality of adaptive behaviors in reality implies that CSD is an inherent attribute of real-world network systems, and therefore, the concept of CSD has significant application potential in the study of adaptive behaviors in network systems

    Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells.

    Get PDF
    Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC

    New insights into electrocatalytic ozone generation via splitting of water over PbO2 electrode: A DFT study

    Get PDF
    © 2016 Elsevier B.V. All rights reserved. The viable mechanisms for O3 generation via the electrocatalytic splitting of H2O over β-PbO2 catalyst were identified through Density Functional Theory calculations. H2O adsorbed onto the surface was oxidized to form OH then O; the latter reacted with a surface bridging O to form O2 which in turn reacted with another surface O to form O3. The final step of the mechanisms occurs via an Eley-Rideal style interaction where surface O2 desorbs and then attacks the surface bridging oxygen, forming O3. A different reaction pathway via an O3H intermediate was found less favoured both thermodynamically and kinetically

    CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma.

    Get PDF
    Metastatic renal cell carcinoma (mRCC) is nearly incurable and accounts for most of the mortality associated with RCC. Von Hippel Lindau (VHL) is a tumour suppressor that is lost in the majority of clear cell RCC (ccRCC) cases. Its role in regulating hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α) is well-studied. Recent work has demonstrated that VHL knock down induces an epithelial-mesenchymal transition (EMT) phenotype. In this study we showed that a CRISPR/Cas9-mediated knock out of VHL in the RENCA model leads to morphologic and molecular changes indicative of EMT, which in turn drives increased metastasis to the lungs. RENCA cells deficient in HIF-1α failed to undergo EMT changes upon VHL knockout. RNA-seq revealed several HIF-1α-regulated genes that are upregulated in our VHL knockout cells and whose overexpression signifies an aggressive form of ccRCC in the cancer genome atlas (TCGA) database. Independent validation in a new clinical dataset confirms the upregulation of these genes in ccRCC samples compared to adjacent normal tissue. Our findings indicate that loss of VHL could be driving tumour cell dissemination through stabilization of HIF-1α in RCC. A better understanding of the mechanisms involved in this phenomenon can guide the search for more effective treatments to combat mRCC

    A Roughness Study of Ytterbium-Doped Potassium Yttrium Tungstate (YB: KYW) Thin-Disk Femtosecond Ablated Dentin

    Get PDF
    Introduction: The aim of this study was to evaluate the morphological changes and quantitatively assess the roughness of dentin after the ablation with a Ytterbium-Doped Potassium Yttrium Tungstate (YB: KYW) thin-disk femtosecond pulsed laser of different fluences, scanning speeds and scanning distances.Method: Twelve extracted human premolars were sectioned into crowns and roots along the cementum-enamel junction, and then the crowns were cut longitudinally into sheets about 1.5 mm thick with a cutting machine. The dentin samples were fixed on a stage at focus plane. The laser beam was irradiated onto the samples through a galvanometric scanning system, so rectangular movement could be achieved. After ablation, the samples were examined with a scanning electron microscope and laser three-dimensional profile measurement microscope for morphology and roughness study.With increasing laser fluence, dentin samples exhibited more melting and resolidification of dentin as well as debris-like structure and occluded parts of dentinal tubules.Results: When at the scanning speed of 2400mm/s and scanning distance of 24μm, the surface roughness of dentin ablated with femtosecond pulsed laser decreased significantly and varied between values of dentin surface roughness grinded with two kinds of diamond burs with different grits. When at the scanning speed of 1200mm/s and scanning distance of 12μm, the surface roughness decreased slightly, and the surface roughness of dentin ablated with femtosecond pulsed laser was almost equal to that grinded with a low grit diamond bur.Conclusion: This study showed that increased laser influence may lead to more collateral damage and lower dentin surface roughness, while scanning speed and scanning distance were also negatively correlated with surface roughness. Adequate parameters should be chosen to achieve therapeutic benefits, and different parameters can result in diverse ablation results
    corecore