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Abstract
Seeking solitary wave solutions and revealing their interactional characteristics for 
nonlinear evolution equations help us lot to comprehend the motion laws of the 
microparticles. As a local nonlinear dynamic behavior, the soliton-collision is dif-
ficult to be reproduced numerically. In this paper, the soliton-collision process in 
the nonlinear perturbed Schrödinger equation is simulated employing the multi-
symplectic method. The multi-symplectic formulations are derived including the 
multi-symplectic form and three local conservation laws of the nonlinear perturbed 
Schrödinger equation. Employing the implicit midpoint rule, we construct a multi-
symplectic scheme, which is equivalent to the Preissmann box scheme, for the non-
linear perturbed Schrödinger equation. The elegant structure-preserving properties 
of the multi-symplectic scheme are illustrated by the tiny maximum absolute resid-
ual of the discrete multi-symplectic structure at each time step in the numerical sim-
ulations. The effects of the perturbation strength on the soliton-collision in the non-
linear perturbed Schrödinger equation are reported in the numerical results in detail.
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1  Introduction

To formulate the temporal evolution of the state of the microparticles, Schrödinger 
introduced the wave function and proposed the well-known Schrödinger equation 
in 1926 [1], which initiated the research on the quantum mechanics and aroused 
considerable interests in the last century because of the wide applications [2–5] 
in the atomic physics field, the nuclear physics field and so on.

Many applications of the nonlinear Schrödinger equation (NLSE) are devel-
oped based on its soliton existence and properties [6, 7], particularly for the 
soliton interactions. Based on the perturbation theory for nonlinear systems, 
Malomed [8–10] investigated the soliton-collision for the nonlinear perturbed 
Schrödinger equation and found some interesting nonlinear phenomena during 
the collision process. Kanna and Lakshmanan [11] presented the exact bright 
one-/two-soliton solutions of the integrable N-coupled NLSE employing the 
Hirota method and presented some amplitude profiles of the soliton collisions. 
Dmitriev et al. [12] investigated the 2-soliton solution of the NLSE without any 
perturbation and anticipated that inelastic soliton collisions may occur when the 
perturbation is considered. For the discrete NLSE, Papacharalampous et al. [13] 
revealed some novel characteristics of the soliton collisions. Soljacic et al. [14] 
presented the reduction approach of the soliton collisions in an arbitrary number 
of coupled NLSE. Wang et al. [15] found that the both the inelastic soliton solu-
tion and the elastic soliton solution would appear in a general coupled NLSE. 
Liu et  al. [16] and Xie et  al. [17] reported the existence of the elastic collision 
between the dark N-solitons for the fourth-order NLSE with the weak disper-
sion. Dai et  al. [18] investigated the periodical collision characteristics of two 
hollow solitons in (2 + 1)-dimensional nonlocal NLSE theoretically. Ilati and 
Dehghan [19] studied interaction phenomena between three solitons of coupled 
NLSE with a weak damping. Yu et al. [20] analysed the collision characteristics 
between two anti-dark soliton solutions in the (3 + 1)-dimensional NLSE with a 
dissipation rate. Rao et  al. [21] obtained the multi-soliton solutions and repro-
duced the elastic soliton collision in the nonlocal M-component NLSE. Recently, 
studies on N-soliton solutions were reported for novel nonlocal integrable nonlin-
ear Schrödinger type equations by combing two nonlocal reductions [22], which 
enriched the theoretical analysis on the nonlinear Schrödinger type equation. In 
addition, Prinari [23] summarized the developments of the inverse scattering 
transform method applying on the NLSE and offered some perspectives about 
future directions on this interesting subject.

In fact, both the soliton solution and the soliton collision are local nonlinear 
behaviors of the evolution equations. To investigate the local geometric charac-
teristics of the Hamiltonian systems described by the conservative partial differ-
ential equation (PDE), Bridges [24, 25] proposed the multi-symplectic method 
deriving from the symplectic method [26–28] for the Hamiltonian systems 
described by the conservative ordinary differential equation (ODE). The most 
prominent contribution of the multi-symplectic theory is the preservation on the 
three local conservation laws (including the conservation of the multi-symplectic 
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structure, the local energy and the local momentum) in the numerical simulation 
excellently [29]. Inspired by the structure-preserving properties of the (multi-)
symplectic method, we developed the generalized multi-symplectic method [30, 
31] for non-conservative infinite-dimensional systems and applied it in the solv-
ing of several complex dynamic problems [32–37]. Thus, the multi-symplectic 
approach will be proposed to investigate the soliton collision characteristics in 
the nonlinear perturbed Schrödinger equation.

Simulating the evolution of the soliton solutions of the Schrödinger equation by 
using the multi-symplectic method isn’t new at all. Based on the multi-symplectic 
theory, Wang et  al. [38] introduced a differential scheme for a strongly coupled 
NLSE and found that the proposed scheme could preserve not only the multi-sym-
plectic structure but also the conservation quantity on the mass. Wang et  al. [39] 
derived two semi-explicit schemes for the NLSE and proved that these schemes are 
equivalent to the multi-symplectic Euler box scheme. Aydin and Karasoezen [40] 
developed a six-point multi-symplectic scheme for the coupled NLSE by using the 
Preissmann discrete method. Chen et al. [41] proposed a splitting form of the multi-
symplectic scheme to solve the coupled NLSE and found that the splitting scheme 
can preserve all local conservative quantities listed in the multi-symplectic frame-
work. Hong and Kong [42] employed two multi-symplectic schemes derived from 
the Runge–Kutta approach and the Fourier spectral approach to solve the fourth-
order Schrödinger equations respectively. Qian et al. [43] proposed a semi-explicit 
splitting scheme by using the multi-symplectic splitting method to solve a 3-cou-
pled NLSE. Bai et al. [44] studied the numerical behaviors of the multi-symplectic 
integrator for the NLSE with inclusions of finite delta potentials. In our previous 
job [45], we separated the local energy/momentum dissipations from the simula-
tion results of the linear-damped NLSE by using the generalized multi-symplectic 
method.

The above contributions on the multi-symplectic analysis for the NLSE are 
mainly on the evolution of the soliton solutions. However, reproducing the soliton-
collision phenomenon in the NLSE is more challenging because that the complex 
interchange of energy between the solitons is contained in the soliton-collision phe-
nomenon. Thus, we will investigate the soliton-collision phenomenon in the non-
linear perturbed Schrödinger equation based on the multi-symplectic method in 
this paper. The multi-symplectic formulations with several local conservation laws 
is presented for the nonlinear perturbed Schrödinger equation firstly. Then, a Pre-
issmann box scheme is constructed for the multi-symplectic PDEs to simulate the 
soliton-collision phenomenon in the nonlinear perturbed Schrödinger equation. In 
the numerical results reported in this paper, the effects of the perturbation strength 
on the soliton-collision are illustrated in detail.

2 � Multi‑Symplectic Formulations of Nonlinear Perturbed 
Schrödinger Equation

Considering the following nonlinear perturbed Schrödinger equation [9] in this 
work,
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where u is a complex wave function, i =
√
−1 , � is a small positive coefficient. It 

is needed to clarify that the nonlinear perturbed Schrödinger equation given by 
Eq.  (1) is non-integrable and the nonlinear perturbation term �u�x

(|u|2) is a non-
linear damping term [9] resulting in the dynamic symmetry breaking [30, 31] of the 
Eq. (1). In fact, it has been proved that some coupled nonlinear Schrödinger equa-
tions without any perturbation are completely integrable [46, 47], which motivate 
us to consider the non-integrable case in this paper. In our previous jobs [30, 31], 
the damping term was taken into account in the coefficient matrices and the effects 
of which on the local conservation laws were considered. In this paper, for a small 
positive coefficient � , the following approximate multi-symplectic structure of the 
NLSE will be presented when a tiny nonlinear term in the Hamiltonian function is 
neglected.

To transform the nonlinear perturbed Schrödinger Eq. (1) from a complex PDE to 
real coupled PDEs, let u = p + iq referring to Refs. [38–40, 45], then,

Introducing the canonical momenta as �xp = v, �xq = w and the state vector as 
� = [p, q, v,w]T , Eqs. (2) can be rewritten as a multi-symplectic PDE [24, 25, 48] 
approximately,

where S(�) = (p2 + q2)2 +
1

2
(v2 + w2) − �(pv + qw)(p2 + q2) is the approximate 

Hamiltonian function (a tiny nonlinear term in which is neglected to make the sys-
tem integrable approximately); �,� are skew-symmetric matrices given by,

It is needed to clarify that, S(�) is called as the approximate Hamiltonian function 
because that there is a small nonlinear term is neglected. With this approximation, 
Eq. (3) is completely integrable system that isn’t equivalent to Eq. (1) strictly. But 
the neglected term is tiny. Thus, we can approximate system (3) contains the local 
nonlinear characteristics of the NLSE given by Eq. (1).

Equation (3) is defined as the multi-symplectic PDE for the existence of the con-
servation law on the multi-symplectic structure [24] formulated as,

where ∧ denotes the wedge product operator.
The above approximate multi-symplectic structure for Eq.  (1) implies that the 

nonlinear term �u�x
(|u|2) will not break the symmetry of the NLSE if a small 

(1)i�tu + �xxu + 2|u|2u − �u�x
(|u|2) = 0,

(2)
{

−�tq + �xxp + 2(p2 + q2)p − �p�x(p
2 + q2) = 0

�tp + �xxq + 2(p2 + q2)q − �q�x(p
2 + q2) = 0

.

(3)��t� +��x� = ∇
�
S(�),

� =

⎡
⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎣

0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎦

(4)�t(dp ∧ dq) + �x(dp ∧ dv + dq ∧ dw) = 0,
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nonlinear term in the Hamiltonian function is neglected. Thus, different from [9], we 
named the nonlinear term �u�x

(|u|2) as perturbation instead of damping term in the 
framework of multi-symplectic theory because that we always define the approxi-
mate symmetric form of the infinite-dimensional system as generalized multi-sym-
plectic form [30, 31] if a damping term is contained in the system.

The important appendant of the symmetry of Eq.  (3) is two local conservation 
quantities, i.e., the local energy and the local momentum.

Performing the inner product of Eq. (3) with �t� , we can get,

with ⟨�t�, ��t�⟩ = 0 because of �= −�
T.

The right-hand side of Eq.  (5) can be reduced as ⟨�t�, ∇�
S(�)⟩ = �tS(�) 

and the left-hand side of Eq.  (5) can be split into two terms as 
⟨�t�, ��x�⟩ = 1

2
�t⟨�, ��x�⟩ + 1

2
�x⟨�t�, ��⟩ . Then, the local energy conservation 

law can be derived from Eq. (5),

Following the outline of the deducing process for the local energy conservation 
law presented above, the local momentum conservation law can be obtained by tak-
ing the inner product of Eq. (3) with �x�,

3 � A Multi‑Symplectic Scheme for Nonlinear Perturbed Schrödinger 
Equation

When Bridges proposed the multi-symplectic method [24], several classic differen-
tial discretization approaches were evaluated to check whether they can be used to 
preserve the multi-symplectic structure of the infinite-dimensional Hamiltonian sys-
tems or not. Among which, the Preissmann box discretization method [49] for the 
Hamiltonian PDEs derived from the implicit midpoint rule for ODE is a robust 
approach that can preserve the three conservation laws [24] perfectly. In the follow-
ing discretization process, the numerical approximation �(jΔt, kΔx) is denoted by �k

j
 

with the time step length Δt and the spatial step length Δx.
When the implicit midpoint method is used to discretize the PDEs (3) in the time 

and space separately, the Preissmann box scheme can be formulated as,

where �+
t
 and �+

x
 are the forward differences for �t and �x respectively, the mid-

points are defined as 

(5)⟨�t�, ��x�⟩ = ⟨�t�, ∇�
S(�)⟩,

(6)�t[S(�) −
1

2
⟨�, ��x�⟩] + 1

2
�x⟨�, ��t�⟩ = 0

(7)�x[S(�) −
1

2
⟨�, ��t�⟩] + 1

2
�t⟨�, ��x�⟩ = 0.

(8)��+
t
�
k+1∕ 2

j
+��+

x
�
k
j+1∕ 2

= ∇
�
S
(
�
k+1∕ 2

j+1∕ 2

)
,
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�
k+1∕ 2

j
=

1

2

(
�
k+1
j

+ �
k
j

)
, �k

j+1∕ 2
=

1

2

(
�
k
j+1

+ �
k
j

)
, �

k+1∕ 2

j+1∕ 2
=

1

2

(
�
k+1∕ 2

j+1
+ �

k+1∕ 2

j

)
 and so 

on.
Substituting �,�, �, S(�) into Eq. (8), we can get,

Following the outline of our previous job [45], the intermediate variables v and 
w can be eliminated, and a new scheme equivalent to the Preissmann box scheme 
can be obtained,

The most fascinating characteristics of the multi-symplectic scheme is the 
preservation of the three discretization conservation laws. As a typical multi-
symplectic scheme, the three discretization conservation laws of the Preissmann 
box scheme (8) will be given in detail.

First discretization conservation law is the discretization multi-symplectic con-
servation law. The variation equation of the Preissmann box scheme (8) is,

(9)

qk+1∕ 2j+1 − qk+1∕ 2j

Δt
−

vk+1j+1∕ 2 − vkj+1∕ 2
Δx

= 2
[

(

pk+1∕ 2j+1∕ 2

)2
+
(

qk+1∕ 2j+1∕ 2

)2
]

pk+1∕ 2j+1∕ 2 − �pk+1∕ 2j+1∕ 2

[

pk+1∕ 2j+1∕ 2 v
k+1∕ 2
j+1∕ 2 + qk+1∕ 2j+1∕ 2w

k+1∕ 2
j+1∕ 2

]

,

(10)
−

pk+1∕ 2j+1 − pk+1∕ 2j

Δt
−

wk+1
j+1∕ 2 − wk

j+1∕ 2

Δx

= 2
[

(

pk+1∕ 2j+1∕ 2

)2
+
(

qk+1∕ 2j+1∕ 2

)2
]

qk+1∕ 2j+1∕ 2 − �qk+1∕ 2j+1∕ 2

[

pk+1∕ 2j+1∕ 2 v
k+1∕ 2
j+1∕ 2 + qk+1∕ 2j+1∕ 2w

k+1∕ 2
j+1∕ 2

]

,

(11)
(
pk+1
j+1∕ 2

− pk
j+1∕ 2

)/
Δx = v

k+1∕ 2

j+1∕ 2
,

(12)
(
qk+1
j+1∕ 2

− qk
j+1∕ 2

)/
Δx = w

k+1∕ 2

j+1∕ 2
.

(13)

q
k+3∕ 2

j+1
− q

k+3∕ 2

j
+ q

k+1∕ 2

j+1
− q

k+1∕ 2

j

Δt
− 2

pk+2
j+1∕ 2

− 2pk+1
j+1∕ 2

+ pk
j+1∕ 2

(Δx)2

= 2

[(
p
k+3∕ 2

j+1∕ 2

)2

+
(
q
k+3∕ 2

j+1∕ 2

)2
]
p
k+3∕ 2

j+1∕ 2
− �p

k+3∕ 2

j+1∕ 2

[
p
k+3∕ 2

j+1∕ 2
v
k+3∕ 2

j+1∕ 2
+ q

k+3∕ 2

j+1∕ 2
w
k+3∕ 2

j+1∕ 2

]
,

(14)

−
p
k+3∕ 2

j+1
− p

k+3∕ 2

j
+ p

k+1∕ 2

j+1
− p

k+1∕ 2

j

Δt
− 2

qk+2
j+1∕ 2

− 2qk+1
j+1∕ 2

+ qk
j+1∕ 2

(Δx)2

= 2

[(
p
k+3∕ 2

j+1∕ 2

)2

+
(
q
k+3∕ 2

j+1∕ 2

)2
]
q
k+3∕ 2

j+1∕ 2
− �q

k+3∕ 2

j+1∕ 2
[p

k+3∕ 2

j+1∕ 2
v
k+3∕ 2

j+1∕ 2
+ q

k+3∕ 2

j+1∕ 2
w
k+3∕ 2

j+1∕ 2
].

(15)��+
t
d�

k+1∕ 2

j
+��+

x
d�k

j+1∕ 2
= S

��
(�

k+1∕ 2

j+1∕ 2
)d�

k+1∕ 2

j+1∕ 2
.
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Taking the wedge product of d�k+1∕ 2
j+1∕ 2

 , we can get,

For the Hessian matrix contained in the right end item of Eq. (16) is symmet-
ric, i.e., S

��
(�

k+1∕ 2

j+1∕ 2
) = [S

��
(�

k+1∕ 2

j+1∕ 2
)]T , the right end item of Eq. (16) is zero, so,

in which,

Substituting Eqs.  (18) and (19) into Eq.  (17), the discrete multi-symplectic 
conservation law is obtained,

For the existence of the numerical truncation error of the multi-symplectic 
scheme given by Eqs. (13–14), the residual of the discrete multi-symplectic struc-
ture isn’t zero on each grid point. We will record the maximum absolute residual 
of the discrete multi-symplectic structure at each time step in the numerical simu-
lation as,

Δj can be used to assess the structure-preserving characteristic of the multi-
symplectic scheme given by Eqs. (13–14) directly. To avoid the tedious math-
ematical deduction, although the discrete form of the local energy conservation 

(16)
d�

k+1∕ 2

j+1∕ 2
∧��+

t
d�

k+1∕ 2

j
+ d�

k+1∕ 2

j+1∕ 2
∧��+

x
d�k

j+1∕ 2
= d�

k+1∕ 2

j+1∕ 2
∧ S

��
(�

k+1∕ 2

j+1∕ 2
)d�

k+1∕ 2

j+1∕ 2
.

(17)d�
k+1∕ 2

j+1∕ 2
∧��+

t
d�

k+1∕ 2

j
+ d�

k+1∕ 2

j+1∕ 2
∧��+

x
d�k

j+1∕ 2
= 0,

(18)

d�k+1∕ 2j+1∕ 2 ∧��+t d�
k+1∕ 2
j = 1

2Δt

(

d�k+1∕ 2j+1 + d�k+1∕ 2j

)

∧�
(

d�k+1∕ 2j+1 − d�k+1∕ 2j

)

= 1
2Δt

(

d�k+1∕ 2j+1 ∧�d�k+1∕ 2j+1 − d�k+1∕ 2j ∧�d�k+1∕ 2j

)

= 1
2
�+t

(

d�k+1∕ 2j ∧�d�k+1∕ 2j

)

= 1
2
�+t (dp

k+1∕ 2
j ∧ dqk+1∕ 2j ),

(19)

d�k+1∕ 2j+1∕ 2 ∧��+x d�
k
j+1∕ 2 =

1
2Δx

(

d�k+1j+1∕ 2 + d�kj+1∕ 2
)

∧�
(

d�k+1j+1∕ 2 − d�kj+1∕ 2
)

= 1
2Δx

(

d�k+1j+1∕ 2 ∧�d�k+1j+1∕ 2 − d�kj+1∕ 2 ∧�d�kj+1∕ 2
)

= 1
2
�+x

(

d�kj+1∕ 2 ∧�d�kj+1∕ 2
)

= 1
2
�+x

(

dpkj+1∕ 2 ∧ dvkj+1∕ 2 + dqkj+1∕ 2 ∧ dwk
j+1∕ 2

)

.

(20)
�+
t

(
dp

k+1∕ 2

j
∧ dq

k+1∕ 2

j

)
+ �+

x

(
dpk

j+1∕ 2
∧ dvk

j+1∕ 2
+ dqk

j+1∕ 2
∧ dwk

j+1∕ 2

)
= 0.

(21)
Δj = max

k

|||�
+
t
(dp

k+1∕ 2

j
∧ dq

k+1∕ 2

j
) + �+

x
(dpk

j+1∕ 2
∧ dvk

j+1∕ 2
+ dqk

j+1∕ 2
∧ dwk

j+1∕ 2
)
|||.
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law and the discrete form of the local momentum conservation law can also be 
used to illustrate the structure-preserving characteristics of the multi-symplectic 
scheme given by Eqs. (13–14), they will not be presented in this section.

4 � Numerical Experiments

In the following numerical experiments, the structure-preserving properties of the 
multi-symplectic scheme given by Eqs. (13–14) will be assessed by using the maxi-
mum absolute residual of the discrete multi-symplectic structure at each time step 
firstly. Then, the soliton-collision phenomena in the nonlinear perturbed Schrödinger 
Eq.  (1) will be reproduced with different values of � . In the following numerical 
simulations, we let the time step size Δt = 0.05 and the spatial step size Δx = 0.1 in 
the domain x × t = [−100, 100] × [0, 120].

Referring to the results of Refs. [8, 9], the acceleration of the soliton solution 
of the nonlinear perturbed Schrödinger Eq.  (1) can be formulated as V̇ =

128

15
𝜀𝜂4 , 

where V  is the moving speed of the soliton solution, � is a constant. In this paper, we 
let �1 = 0.5, �2 = 2 (the subscript denotes the two soliton solutions) and V(0) = 1 . 
The initial condition of the soliton solutions of the nonlinear perturbed Schrödinger 
Eq. (1) considered in the following simulation is,

The collision processes of the two soliton solutions ( u1(t, x), u2(t, x) ) are simu-
lated by using the multi-symplectic scheme given by Eqs. (13–14) with different 
perturbation strengths (in the simulations, we consider � = 0, 0.01, 0.05, 0.1 respec-
tively). The maximum absolute residual of the discrete multi-symplectic structure at 
each time step is recorded, see Fig. 1.

From Fig.  1, it can be found that, the maximum absolute residuals of the dis-
crete multi-symplectic structure in each time step are less than 5 × 10−8 in each case, 
which implies that the multi-symplectic conservation law is preserved perfectly in 
the simulations and the following numerical results are credible.

The collision process of the two soliton solutions of the nonlinear perturbed 
Schrödinger Eq.  (1) for each case (including � = 0 ; � = 0.01 ; � = 0.05 ; � = 0.1 ) is 
simulated. The evolutions of the amplitude profiles for the wave form in the soliton-
collision process denoted by |u| for each case are shown in Figs. 2, 4, 6 and 8 respec-
tively, where |u| =

[
1

4
(u1 + u2 + u1 + u2)

2 +
1

4
(u1 + u2 − u1 − u2)

2

]1∕ 2
 , u1 and u2 

denote the conjugate of u1 and u2 respectively. To further illustrate the soliton-colli-
sion process, the evolutions of the central positions for the solitons are shown in 
Fig. 3, 5, 7 and 9 .

From Figs. 2, 3, 4, 5, 6, 7, 8, 9, we can find that the effects of the perturbation 
strength on the soliton-collision in the nonlinear perturbed Schrödinger Eq.  (1) 
are remarkable. When � = 0 , the essence of the soliton-collision in the nonlin-
ear perturbed Schrödinger Eq. (1) is the superposition of these two soliton solu-
tions. In this process, the two soliton solutions move in the same direction and 

(22)u1(0, x) = isech(x)e
i

2
x
, u2(0, x) = 4isech(4x)e

i

2
x
.
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this moving direction will not be changed with the time elapse, which is agreed 
with the results reported in Refs. [14, 50]. When 𝜀 > 0 , the soliton-collision phe-
nomena are more remarkable with the increase of � . In this process, the moving 

Fig. 1   The maximum absolute residual of the discrete multi-symplectic structure

Fig. 2   Amplitude profile of the soliton-collision with � = 0
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direction of u1 changes quicker than that of u2 . It is interesting that, when � = 0.1 , 
u1 is almost reflected in the collision process. It is worth to mentioning that, some 
nonlinear phenomena, such as unphysical excitations, appear in Figs.  4, 6 and 
8. Because of the existence of the perturbation denoted by � , Eq.  (1) is a non-
integrable system, which has been mentioned in Sect.  2 (when a tiny nonlinear 
term in the Hamiltonian function is neglected, Eq.  (2) can be rewritten as the 

Fig. 3   Central positions of the soliton-collision with � = 0

Fig. 4   Amplitude profile of the soliton-collision with � = 0.01
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symmetric form given by Eq.  (3) approximately). Thus, the appearance of the 
unphysical excitations in the soliton-collision when � ≠ 0 is reasonable.

From the expression of the propagation speed of the soliton solution of 
Eq.  (1) 

(
V = ∫ t

0

128

15
��4dt =

128

15
��4t

)
 , we can conclude that, the increase of the 

perturbation strength � will increase the difference of the propagation speeds of 
the solitons ( u1 and u2 ) at any moment. The larger difference of the propagation 
speeds implies the bigger difference of the momenta of the solitons, which will 

Fig. 5   Central positions of the soliton-collision with � = 0.01

Fig. 6   Amplitude profile of the soliton-collision with � = 0.05
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result in the sharp change of the propagation direction of the soliton with the 
smaller momentum when it interacts with the soliton with the bigger momen-
tum, see Figs. 4, 6 and 8. Thus, the perturbation strength determines the chang-
ing speed of the moving direction of the solitons during the collision process.

Fig. 7   Central positions of the soliton-collision with � = 0.05

Fig. 8   Amplitude profile of the soliton-collision with � = 0.1
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5 � Conclusions

The NLSE describes the motion of the microparticles by the wave function, which 
owns broad applications in quantum physics and aroused considerable interests in 
the last century. Seeking the analytical solution, especially the soliton solution 
of the NLSE and revealing the nonlinear dynamic characteristics of which are 
eternal topics for physicists. In this paper, the soliton-collision phenomena in the 
nonlinear perturbed Schrödinger equation with different perturbation strengths 
are investigated employing the multi-symplectic method in detail. The standard 
multi-symplectic form with three local conservation laws for the nonlinear per-
turbed Schrödinger equation is proposed firstly. Then, a multi-symplectic scheme 
equivalent to the Preissmann box scheme is constructed and the discrete multi-
symplectic conservation law is deduced in detail. In the numerical simulations, 
the tiny maximum absolute residuals of the discrete multi-symplectic structure in 
each time step illustrate the excellent structure-preserving properties of the con-
structed multi-symplectic scheme. The effects of the perturbation strength on the 
soliton-collision in the nonlinear perturbed Schrödinger equation are presented 
finally. We found that, with the increase of the perturbation strength, the effect 
of the perturbation strength on the soliton-collision in the nonlinear perturbed 
Schrödinger equation becomes more remarkable.
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