2,599 research outputs found

    Why Firms Use Social Media: An Absorptive Capacity Perspective

    Get PDF

    Cecal Varices Presenting as Anemia: Case Report and Review of the Literature

    Get PDF
    Since the original description of colonic varices in 1954 [N Engl J Med 1954;250:434-438], fewer than 100 cases have been reported in the literature. Particularly, even fewer cases of cecal varices have been reported. More than 75% of these cases have been due to portal hypertension. Our objective is to contribute a rare case with an uncommon presentation to the medical literature. We present the case of a 53-year-old male with hepatitis C and hepatitis B liver cirrhosis who presented for outpatient colonoscopy. The indication for colonoscopy was bright red blood per rectum and iron deficiency anemia. A significant amount of varices were noted in the cecum and proximal ascending colon. No endoscopic evidence of colonic bleeding was noted. This is the first reported case of cecal varices not presenting with massive lower gastrointestinal bleeding

    Displacing and Disrupting: A Dialogue on Hmong Studies and Asian American Studies

    Get PDF
    This article summarizes a roundtable discussion of scholars that took place at the Association for Asian American Studies Conference in San Francisco, 2014. Hailing from various academic disciplines, the participants explored the relationship between the emerging field of Hmong/Hmong American Studies and Asian American Studies. Questions of interest included: In what ways has Asian American Studies informed Hmong/Hmong American Studies, or failed to do so? In what ways does Hmong/Hmong American Studies enrich/challenge Asian American Studies? What are the tensions between these two fields and other related fields? How do/should the new programs in Hmong/Hmong American Studies relate to the existing Asian American Studies programs regarding curriculum, activism and/or resource allocation

    Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years

    Get PDF
    Objective: To examine whether dietary intake of specific flavonoid sub-classes is associated with weight change over time, including flavonols, flavones, flavanones, flavan-3-ols, anthocyanins, and flavonoid polymers. Design: Three prospective cohort studies. Setting: Health professionals in the United States. Participants: 124,086 men and women participating in the Health Professionals Follow-up Study (HPFS), Nurses’ Health Study (NHS), and Nurses’ Health Study II (NHS II). Main outcome measure: Self-reported change in weight over multiple 4-year time intervals between 1986 and 2011. Results: Increased consumption of most flavonoid sub-classes, including flavonols, flavan-3-ols, anthocyanins, and flavonoid polymers was inversely associated with weight change over 4-year time intervals, after adjustment for simultaneous changes in other lifestyle factors including other aspects of diet, smoking status, and physical activity. In the pooled results, the greatest magnitude of association was observed for anthocyanins (-0.22 lbs, 95% CI -0.30 to -0.15 lbs per additional SD/day, 10 mg), flavonoid polymers (-0.18 lbs, 95% CI -0.28 to -0.08 lbs per additional SD/day, 138 mg), and flavonols (-0.16 lbs, 95% CI -0.26 to -0.06 lbs per additional SD/day, 7 mg). After additional adjustment for fiber intake associations remained significant for anthocyanins, proanthocyanidins, and total flavonoid polymers but were attenuated and no longer statistically significant for other sub-classes. Conclusions: Higher intake of foods rich in flavonols, flavan-3-ols, anthocyanins, and flavonoid polymers, may contribute to weight maintenance in adulthood, and may help to refine dietary recommendations for the prevention of obesity and its potential sequelae

    Beta Human Papillomavirus 8E6 Attenuates Non-Homologous End Joining by Hindering DNA-PKcs Activity

    Get PDF
    Cutaneous viral infections occur in a background of near continual exposure to environmental genotoxins, like UV radiation in sunlight. Failure to repair damaged DNA is an established driver of tumorigenesis and substantial cellular resources are devoted to repairing DNA lesions. Beta-human papillomaviruses (β-HPVs) attenuate DNA repair signaling. However, their role in human disease is unclear. Some have proposed that β-HPV promotes tumorigenesis, while others suggest that β-HPV protects against skin cancer. Most of the molecular evidence that β-HPV impairs DNA repair has been gained via characterization of the E6 protein from β-HPV 8 (β-HPV 8E6). Moreover, β-HPV 8E6 hinders DNA repair by binding and destabilizing p300, a transcription factor for multiple DNA repair genes. By reducing p300 availability, β-HPV 8E6 attenuates a major double strand DNA break (DSB) repair pathway, homologous recombination. Here, β-HPV 8E6 impairs another DSB repair pathway, non-homologous end joining (NHEJ). Specifically, β-HPV 8E6 acts by attenuating DNA-dependent protein kinase (DNA-PK) activity, a critical NHEJ kinase. This includes DNA-PK activation and the downstream of steps in the pathway associated with DNA-PK activity. Notably, β-HPV 8E6 inhibits NHEJ through p300 dependent and independent means. Together, these data expand the known genome destabilizing capabilities of β-HPV 8E6

    Intensification and poleward shift of subtropical western boundary currents in a warming climate

    Get PDF
    A significant increase in sea surface temperature (SST) is observed over the midlatitude western boundary currents (WBCs) during the past century. However, the mechanism for this phenomenon remains poorly understood due to limited observations. In the present paper, several coupled parameters (i.e., sea surface temperature (SST), ocean surface heat fluxes, ocean water velocity, ocean surface winds and sea level pressure (SLP)) are analyzed to identify the dynamic changes of the WBCs. Three types of independent data sets are used, including reanalysis products, satellite-blended observations. and climate model outputs from the fifth phase of the Climate Model Intercomparison Project (CMIP5). Based on these broad ranges of data, we find that the WBCs (except the Gulf Stream) are intensifying and shifting toward the poles as long-term effects of global warming. An intensification and poleward shift of near-surface ocean winds, attributed to positive annular mode-like trends, are proposed to be the forcing of such dynamic changes. In contrast to the other WBCs, the Gulf Stream is expected to be weaker under global warming, which is most likely related to a weakening of the Atlantic Meridional Overturning Circulation (AMOC). However, we also notice that the natural variations of WBCs might conceal the long-term effect of global warming in the available observational data sets, especially over the Northern Hemisphere. Therefore, long-term observations or proxy data are necessary to further evaluate the dynamics of the WBCs

    Intensification and poleward shift of subtropical western boundary currents in a warming climate

    Get PDF
    A significant increase in sea surface temperature (SST) is observed over the midlatitude western boundary currents (WBCs) during the past century. However, the mechanism for this phenomenon remains poorly understood due to limited observations. In the present paper, several coupled parameters (i.e., sea surface temperature (SST), ocean surface heat fluxes, ocean water velocity, ocean surface winds and sea level pressure (SLP)) are analyzed to identify the dynamic changes of the WBCs. Three types of independent data sets are used, including reanalysis products, satellite-blended observations. and climate model outputs from the fifth phase of the Climate Model Intercomparison Project (CMIP5). Based on these broad ranges of data, we find that the WBCs (except the Gulf Stream) are intensifying and shifting toward the poles as long-term effects of global warming. An intensification and poleward shift of near-surface ocean winds, attributed to positive annular mode-like trends, are proposed to be the forcing of such dynamic changes. In contrast to the other WBCs, the Gulf Stream is expected to be weaker under global warming, which is most likely related to a weakening of the Atlantic Meridional Overturning Circulation (AMOC). However, we also notice that the natural variations of WBCs might conceal the long-term effect of global warming in the available observational data sets, especially over the Northern Hemisphere. Therefore, long-term observations or proxy data are necessary to further evaluate the dynamics of the WBCs

    Clonality Analysis of Synchronous Lesions of Cervical Carcinoma Based on X Chromosome Inactivation Polymorphism, Human Papillomavirus Type 16 Genome Mutations, and Loss of Heterozygosity

    Get PDF
    One of the most common forms of carcinoma in women, cervical invasive squamous cell carcinoma (CIC), often coexists with multiple lesions of cervical intraepithelial neoplasia (CIN). CIC and CIN show heterogeneity with respect to both histopathology and biology. To understand the causes, origin, and model of progression of cervical carcinoma, we assessed the clonality of a case with multiple synchronous lesions by analyzing X chromosome inactivation polymorphism, human papillomavirus type 16 (HPV16) sequence variation/mutations, and loss of heterozygosity (LOH). Microdissection was performed on 24 samples from this case, representing the entire lesional situation. The combination of different X chromosome inactivation patterns, two HPV16 point mutations, and LOH at three genomic microsatellite loci, led to the identification of five different “monoclonal” lesions (CIN II, CIN III, and invasive carcinoma nests) and five different “polyclonal” areas (CIN II and normal squamous epithelium). This finding indicated that CIC can originate from multiple precursor cells, from which some clones might progress via multiple steps, namely via CIN II and CIN III, whereas others might develop independently and possibly directly from the carcinoma precursor cells. Our results also supported the view that HPV16 as a “field factor” causes cervical carcinoma, which is probably promoted by the loss of chromosomal material as indicated by the LOH

    A novel approach in magnetic cloud-driven Forbush decrease modeling

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) are large-scale solar wind disturbances propagating from the Sun and causing a depression of the galactic-cosmic ray (GCR) intensity known as Forbush decrease (FD). IC- MEs generally contain coherent plasma structures called magnetic clouds (MCs). A unique and powerful data analysis tool allowing for the study of the quasi-3-D configuration of a MC is the Grad-Shafranov (GS) recons - truction. The aim of this work is to investigate the role played by the MC configuration in the formation of a FD. A suited full-orbit test-particle simulation has been developed in order to evaluate FD amplitude and time pro- file produced by the MC obtained with the GS reconstruction. Particle trajectories are computed starting from an isotropic flux outside the MC region. In addition, particle diffusion has been modeled by superimposing a small-angle scattering over the unperturbed charged particle motion at each time step. The model allows us to investigate the MC effect on GCR propagation and to study the energy dependence of the physical processes in - volved, as it provides an estimate of ground-based GCR counts observations at different latitudes. A comparison between model results and both space-based cosmic-ray measurements in L1 and ground-based observations suggests a major role of drifts in producing the FD and a reduced contribution of GCR particle diffusion
    corecore