116 research outputs found

    Predicting the impacts of Mississippi River diversions and sea-level rise on spatial patterns of eastern oyster growth rate and production

    Get PDF
    © 2017 There remains much debate regarding the perceived tradeoffs of using freshwater and sediment diversions for coastal restoration in terms of balancing the need for wetland restoration versus preserving eastern oyster (Crassostrea virginica) production. Further complicating the issue, climate change-induced sea-level rise (SLR) and land subsidence are also expected to affect estuarine water quality. In this study, we developed a process-based numerical modeling system that couples hydrodynamic, water quality, and oyster population dynamics. We selected Breton Sound Estuary (BSE) (∌2740 km2) in the eastern Mississippi River Deltaic Plain since it is home to several of the largest public oyster seed grounds and private leases for the Gulf coast. The coupled oyster population model was calibrated and validated against field observed oyster growth data. We predicted the responses of oyster population in BSE to small- (142 m3 s−1) and large-scale (7080 m3 s−1) river diversions at the Caernarvon Freshwater Diversion structure planned in the 2012 Coastal Master Plan (Louisiana) under low (0.38 m) and high (1.44 m) relative sea-level rise (RSLR = eustatic SLR + subsidence) compared to a baseline condition (Year 2009). Model results showed that the large-scale diversion had a stronger negative impact on oyster population dynamics via freshening of the entire estuary, resulting in reduced oyster growth rate and production than RSLR. Under the large-scale diversion, areas with optimal oyster growth rates (\u3e15 mg ash-free dry weight (AFDW) oyster−1 wk−1) and production (\u3e500 g AFDW m−2 yr−1) would shift seaward to the southeastern edge of the estuary, turning the estuary into a very low oyster production system. RSLR however played a greater role than the small-scale diversion on the magnitude and spatial pattern of oyster growth rate and production. RSLR would result in an overall estuary-wide decrease in oyster growth rate and production as a consequence of decreased salinities in the middle and lower estuary because rising sea level likely causes increased stage and overbank flow downstream along the lower Mississippi River

    Characteristics and Mechanism of Pb2+ Adsorption From Aqueous Solution Onto Biochar Derived From Microalgae and Chitosan-Modified Microalgae

    Get PDF
    With increasing aquatic heavy metal pollution and eutrophication, using algae to prepare novel adsorbent materials for remediating heavy metal pollution has recently attracted research attention worldwide. However, microalgae biochar exhibits poor adsorption capacity in certain conditions, and little is known regarding microalgae biochar modification using chitosan. Chitosan has been previously used to directly modify microalgae biochar; however, in this study, chitosan is used to modify algae powder used to prepare biochar. Therefore, in this study, chitosan was used as a microalgae biochar modifier to enhance its applicability and adsorption capacity. Accordingly, two new types of microalgae biochars, chitosan-biochar (CTS-BC) and biochar-chitosan (BC-CTS), were developed as an adsorbent material using Clostridium and adding chitosan as a modifier at different stages of its preparation. These developed microalgae biochars were characterized using Brunauer–Emmett–Teller surface area,X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. The adsorption processes of these biochars can be well described by a pseudo-second-order kinetic model. Pb2+ was dominantly adsorbed by microalgal biochar through chemisorption. Following chitosan modification, several mino, cyano, and aromatic ring groups were attached onto the surface of the microalgal biochar. The Pb2+ adsorption capacity of the chitosan-modified biochar was better than that of the unmodified biochar. The maximum Pb2+ adsorption capacity of CTS-BC under acidic conditions (pH = 5) was 9.41 mg g−1, whereas that of BC-CTS under alkaline conditions (pH = 9) was 9.94 mg g−1, both were higher than that of unmodified microalgae biochar under similar conditions. CTS-BC and BC-CTS possessed excellent stability and reusability for Pb(II) adsorption, the adsorption efficiency still remained above 50% even after three cycles. This study demonstrated that adsorbent materials having a stronger heavy-metal adsorption capacity can be prepared by adding chitosan during different stages of the microalgae biochar preparation process

    Seasonal Changes and Vertical Distribution of Fine Root Biomass During Vegetation Restoration in a Karst Area, Southwest China

    Get PDF
    In karst ecosystems, plants absorbing smaller amounts of nutrients, owing to shallow soil, show limited growth. In addition, fine roots (diameter < 2 mm) contribute to the regulation of nutrient cycles in terrestrial ecosystems. However, the spatial and temporal variations of fine root biomass in different vegetation types of the karst region remains poorly understood. In this study, we investigated the seasonal and vertical variation in biomass, necromass, and total mass of fine roots using sequential soil coring under different stages of vegetation restoration (grassland, shrubland, secondary forest, and primary forest) in Southwest China. The results showed that the fine root biomass and necromass ranged from 136.99 to 216.18 g m−2 and 47.34 to 86.94 g m−2, respectively. The total mass of fine roots and their production ranged from 187.00 to 303.11 g m−2 and 55.74 to 100.84 g m−2 year−1, respectively. They showed a single peak across the vegetation restoration gradient. The fine root biomass and total fine root mass also showed a single peak with seasonal change. In autumn, the fine root biomass was high, whereas the necromass was low. Most of the fine roots were concentrated in the surface soil layer (0–10 cm), which accounted more than 57% root biomass, and decreased with increasing soil depth. In addition, fine root production showed a similar vertical pattern of variation with biomass. Overall, our results suggested that fine roots show clear seasonal and vertical changes with vegetation succession. Moreover, there was a higher seasonal fluctuation and a greater vertical decreasing trend in late-successional stages than in the early-successional stages. The conversion of degraded land to forest could improve the productivity of underground ecosystems and vegetation restoration projects in the fragile karst region should, therefore, continue

    Patterns in leaf traits of woody species and their environmental determinants in a humid karstic forest in southwest China

    Get PDF
    IntroductionLeaf functional traits constitute a crucial component of plant functionality, providing insights into plants’ adaptability to the environment and their regulatory capacity in complex habitats. The response of leaf traits to environmental factors at the community level has garnered significant attention. Nevertheless, an examination of the environmental factors determining the spatial distribution of leaf traits in the karst region of southwest China remains absent.MethodsIn this study, we established a 25 ha plot within a karst forest and collected leaf samples from 144 woody species. We measured 14 leaf traits, including leaf area (LA), leaf thicknes (LT), specific leaf area (SLA), leaf length to width ratio (LW), leaf tissue density (LTD), leaf carbon concentration (LC), leaf nitrogen concentration (LN), and leaf phosphorus concentration (LP), leaf potassium concentration (LK), leaf calcium concentration (LCa), leaf magnesium Concentration (LMg), leaf carbon to nitrogen ratio (C/N), leaf carbon to phosphorus ratio (C/P), and leaf nitrogen to phosphorus ratio (N/P), to investigate the spatial distribution of community-level leaf traits and the response of the leaf trait community-weighted mean (CWM) to topographic, soil, and spatial factors.ResultsResults showed that the CWM of leaf traits display different spatial patterns, first, the highest CWM values for LT, LTD, C/N, and C/P at hilltops, second, the highest CWM values for LA, SLA, LW, LC, LN, LP, and LK at depressions, and third, the highest CWM values for LCa, LMg, and N/P at slopes. The correlation analysis showed that topographic factors were more correlated with leaf trait CWM than soil factors, with elevation and slope being the strongest correlations. RDA analysis showed that topographic factors explained higher percentage of leaf trait CWM than soil factors, with the highest percentage of 19.96% being explained by elevation among topographic factors. Variance Partitioning Analysis showed that the spatial distribution of leaf traits is predominantly influenced by the combined effects of topography and spatial factors (37%-47% explained), followed by purely spatial factors (24%-36% explained).DiscussionThe results could improve our understanding of community functional traits and their influencing factors in the karst region, which will contribute to a deeper understanding of the mechanisms that shape plant communities

    Design Considerations of Data Converters for Industrial Technology

    Get PDF
    This paper presents circuit design considerations of high resolution data converters applied for industrial technology, some important design issues related to filter in analog-to-digital converters (ADCs) are discussed. Whole design flow about filter is given in this work and the design considerations mentioned in this paper are useful for the industrial practice and applications of high resolution ADC, finally, a practical design is illustrated with discussion of ΣΔ modulator

    Development of an Aryloxazole Class of Hepatitis C Virus Inhibitors Targeting the Entry Stage of the Viral Replication Cycle

    Get PDF
    Reliance on hepatitis C virus (HCV) replicon systems and protein-based screening assays has led to treatments that target HCV viral replication proteins. The model does not encompass other viral replication cycle steps such as entry, processing, assembly and secretion, or viral host factors. We previously applied a phenotypic high-throughput screening platform based on an infectious HCV system and discovered an aryloxazole-based anti-HCV hit. Structure– activity relationship studies revealed several compounds exhibiting EC50 values below 100 nM. Lead compounds showed inhibition of the HCV pseudoparticle entry, suggesting a different mode of action from existing HCV drugs. Hit 7a and lead 7ii both showed synergistic effects in combination with existing HCV drugs. In vivo pharmacokinetics studies of 7ii showed high liver distribution and long half-life without obvious hepatotoxicity. The lead compounds are promising as preclinical candidates for the treatment of HCV infection and as molecular probes to study HCV pathogenesis
    • 

    corecore