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In karst ecosystems, plants absorbing smaller amounts of nutrients, owing to shallow
soil, show limited growth. In addition, fine roots (diameter < 2 mm) contribute to the
regulation of nutrient cycles in terrestrial ecosystems. However, the spatial and temporal
variations of fine root biomass in different vegetation types of the karst region remains
poorly understood. In this study, we investigated the seasonal and vertical variation in
biomass, necromass, and total mass of fine roots using sequential soil coring under
different stages of vegetation restoration (grassland, shrubland, secondary forest, and
primary forest) in Southwest China. The results showed that the fine root biomass
and necromass ranged from 136.99 to 216.18 g m−2 and 47.34 to 86.94 g m−2,
respectively. The total mass of fine roots and their production ranged from 187.00 to
303.11 g m−2 and 55.74 to 100.84 g m−2 year−1, respectively. They showed a single
peak across the vegetation restoration gradient. The fine root biomass and total fine root
mass also showed a single peak with seasonal change. In autumn, the fine root biomass
was high, whereas the necromass was low. Most of the fine roots were concentrated
in the surface soil layer (0–10 cm), which accounted more than 57% root biomass,
and decreased with increasing soil depth. In addition, fine root production showed a
similar vertical pattern of variation with biomass. Overall, our results suggested that fine
roots show clear seasonal and vertical changes with vegetation succession. Moreover,
there was a higher seasonal fluctuation and a greater vertical decreasing trend in late-
successional stages than in the early-successional stages. The conversion of degraded
land to forest could improve the productivity of underground ecosystems and vegetation
restoration projects in the fragile karst region should, therefore, continue.

Keywords: seasonal pattern, production, stages of succession, ecological restoration, karst ecosystem

INTRODUCTION

The root biomass is an important part of the biosphere and it constitutes approximately 30%
of the aboveground biomass (Yuan and Chen, 2010; Zhiyanski, 2014). Fine roots (<2 mm of
diameter) represent a relatively small part of total plant biomass, but they are the most dynamic
component of the root systems with highest production and turnover rates (Zhiyanski, 2014;
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Sun et al., 2015, 2018). They are responsible for water and
nutrient uptake, and synthesis of certain growth hormones. They
play a vital role in nutrient, water, and elemental cycles (Schmid
and Kazda, 2002; McCormack et al., 2017), and in soil carbon
sequestration in terrestrial ecosystems, owing to the large carbon
input into soil controlled by fine root dynamics (Guo et al.,
2007; Wang et al., 2018). High fine root densities increase the
hydraulic contact between plants and the soil, thereby increasing
water uptake rates and contributing to higher transpiration rates
(Gautam and Mandal, 2013). Some studies showed that fine
root production is an important component of total net primary
production (NPP) in forest ecosystems, contributing 40–60% of
total NPP (Zhiyanski, 2014; Meng et al., 2018). Accurate estimates
of fine root biomass are essential for understanding ecosystem
functions.

Extensive studies have indicated that fine root biomass,
necromass, and production vary with vegetation types, and
that they vary considerably among the different soil horizons
owing to varied water and nutrient content in different soil
layers (Hansson et al., 2013; Wang W. et al., 2016; Shu et al.,
2018). In most ecosystems, roots tend to be most abundant
in the topsoil layer, decreasing exponentially with increasing
soil depth (Zhou et al., 2016). Some studies indicated that
biomass and productivity are strongly dependent on stand age
or developmental stage (Yuan and Chen, 2012; Sun et al.,
2015; Pei et al., 2018). Studies have shown that fine roots
can show considerable fluctuations in biomass and production
throughout the season or among years (Zhiyanski, 2014; Wang
P. et al., 2016). Information on the temporal variation in fine
root biomass is essential for estimating fine root turnover and
production (Fukuzawa et al., 2013). Previous studies have also
recorded that fine root biomass is dependent upon soil properties
(texture, moisture, chemistry, nutrients) and climate conditions
(geographical location, elevation, precipitation, and temperature)
(Pei et al., 2018). For example, necromass was higher at both
low and high latitudes, whereas less at mid latitudes on a large
scale. It was also found to increase with soil organic layer
thickness and stand age in a broad-leaf and a needle-leaf forest
(Wang et al., 2018). Thus, better knowledge of fine root biomass,
productivity, and their spatio-temporal variation induced by
vegetation recovery, is essential for taking the long-term carbon
dynamics and storage into account.

Karst landscapes are widely distributed globally and comprise
almost 18% of the Earth’s surface. Southwest China is one of
the largest karst regions in the world, covering about 1.9 million
km2 (approximately 0.54 million km2 of which lies on carbonate
rocks) (Du et al., 2017; Brandt et al., 2018). This region is
characterized by a high proportion of exposed rock, shallow soil,
high soil CaCO3 and pH, and specialized regional vegetation (Pan
et al., 2016); more than 10,000 years are required to form 1 cm of
topsoil in this area (Liu et al., 2016). The ecological systems in this
region are extremely fragile and susceptible to land degradation
as a result of human disturbance, including intensive mining,
deforestation, overgrazing, and overcultivation. Large areas of the
karst region in Southwest China were severely degraded following
the destruction of natural vegetation and subsequent cultivation
(Wen et al., 2016; Li et al., 2018), with a resulting loss of cultivated

soil, water shortages, soil erosion, decreased biodiversity, and
phyto-community degradation (Tang et al., 2019). The degraded
ecosystem seriously threatened local agriculture, forestry, and
livestock husbandry. However, most of the degraded land in this
region has been undergoing ecological restoration, either through
natural regeneration (spontaneous succession) or afforestation,
due to the implementation of the “Grain for Green” project
and other ecological restoration projects over the past two
decades (Lu et al., 2018). Most of the degraded land has seen
a shift from cropland or abandoned bare land to forest or
other secondary vegetation. Several studies have examined the
aboveground biomass in karst regions, including biomass change
with vegetation restoration (Cheng et al., 2015; Liu et al., 2016,
2018; Tong et al., 2018). However, our current knowledge of
belowground fine root biomass is considerably more limited than
that of aboveground biomass in karst regions, and the effects
of ecological restoration on fine root biomass have not been
evaluated in detail in this fragile ecosystem.

In the present study, we investigated the fine root biomass
in a post-agriculture succession sequence, including grassland,
shrubland, secondary forest, and primary forest via a space-
for-time substitution approach. We aimed to understand the
vertical distribution and seasonal pattern of fine root biomass
across a vegetation restoration gradient in depressions between
karst hills in Southwest China. We hypothesized that fine root
biomass would differ among seasons and soil layers according to
vegetation restoration types within the karst region.

MATERIALS AND METHODS

Study Area
This study was carried out in a karst region of Huanjiang County
in northwest Guangxi Zhuang Autonomous Region, Southwest
China (Figure 1). A subtropical monsoon climate dominates the
study area, with a mean annual precipitation of 1389.1 mm, mean
annual cumulative sunshine duration of 1451 h, and mean annual
temperature of 15.7◦C. The wet season usually lasts from April
to September and accounts for about 70% of the total annual
precipitation. The coldest month is January, with an average daily
temperature of 10.1◦C, and the hottest month is July, with an
average daily temperature of 28.0◦C. The mean annual frost-free
period lasts for 290 days. The area has a mean annual evaporation
of 1571.1 mm and 70% relative humidity (Hu et al., 2017). The
region is characterized by a typical karst landscape with gentle
valleys flanked by steep hills. The soil is a calcareous lithosol
(limestone soil) (Wen et al., 2017). Soil pH and soil organic
carbon varied from 7.06 to 7.68 and 53.96 to 82.63 g kg−1,
respectively. Total N, total P, total K, available N, available P, and
available K ranged from 6.65 to 9.85 g kg−1, 0.89 to 1.98 g kg−1,
3.05 to 4.69 g kg−1, 257.95 to 618.67 mg kg−1, 1.84 to 14.05 mg
kg−1, and 1.79 to 6.09 mg kg−1, respectively (Table 1). These soil
chemical properties were measured referring to Hu et al. (2017).

In recent decades, forests have been largely destroyed by
human disturbance, resulting in diverse vegetation types in
this region (Du et al., 2014; Wen et al., 2016). A post-
agriculture succession sequence, including four vegetation types,
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FIGURE 1 | The study area is located in the karst area Southwest China and the vegetation types are shown.

i.e., grassland, shrubland, secondary forest, and primary forest,
was selected based on a space-for-time substitution approach.
The stand characteristics and soil properties are presented in
Table 1.

Experimental Design
In June 2016, we used a randomized complete block design
with three blocks. Each block was more than 2 km away
from the next block. The block was a strip region from
agricultural activity area to nature reserve. Many vegetation

TABLE 1 | Community characteristics and soil properties (0–10 cm) in the four
vegetation types.

Characteristic Vegetation types

Secondary Primary

Grassland Shrubland forest forest

Tree Density (tree hm−2) – 5608 4625 4433

Mean height (m) 0.66 2.84 4.96 6.37

Mean DBH (cm) – 2.45 4.69 6.16

Soil organic carbon (g kg−1) 53.96 63.13 71.38 82.63

Soil total N (g kg−1) 8.72 9.85 7.20 6.65

Soil total P (g kg−1) 0.89 1.14 1.98 1.60

Soil total K (g kg−1) 4.33 4.69 4.11 3.05

Soil available N (mg kg−1) 257.95 354.60 484.91 618.67

Soil available P (mg kg−1) 2.63 1.84 8.03 14.05

Soil available K (mg kg−1) 1.79 4.03 2.92 6.09

Soil pH value 7.34 7.06 7.35 7.68

types in various successional stages were distributed in
the block. Within each block, one plot (20 m × 20 m)
was established for each of the four vegetation types, and
the distances between plots were more than 200 m (see
Supplementary Figure S1 for details). The major species found
in the grassland included Imperata cylindrica, Microstegium
fasciculatum, and Murdannia triquetra. The major species
found in the shrubland included Pyracantha fortuneana, Vitex
negundo, and Alchornea trewioides. The secondary forest was
mainly composed of Cryptocarya microcarpa, Itoa orientalis,
and Litsea lancifolia. The primary forest was composed
mainly of Cyclobalanopsis glauca, Platycarya longipes, and
Handeliodendron bodinieri.

Fine Root Sampling and Processing
In this study, a sequential soil coring technique was used to
estimate fine root biomass, necromass, and fine root production
of the four vegetation stands (Makkonen and Helmisaari, 1999;
Brunner et al., 2013). Root sampling was carried out from
June 2016 to May 2017. Eight soil cores in each plot were
randomly collected each month from each plot. The soil cores
were collected using a steel soil corer with a diameter of 10 cm
to a soil depth of 30 cm. The soil cores were divided into
three different soil depths: 0–10, 10–20, and 20–30 cm. There
were 36 samples in total (4 vegetation types × 3 replicate
plots × 3 soil depths) at each sampling time. All the samples
were transferred into plastic bags, transported, and placed
in a refrigerator at 4◦C until later processing (Sun et al.,
2015).
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In the laboratory, fine root samples (<2 mm) were washed to
free them from adhering soil and organic matter, and separated
manually into living roots (biomass) and dead roots (necromass)
based on visual inspection, described by Vogt and Persson
(1991). Living roots were elastic, flexible, and the stele was
bright to slightly brown. In contrast, dead roots were easily
broken, with brown or black steles. Thereafter, the sorted samples
were dried at 70◦C to a constant mass and weighed. The fine
root biomass (g m−2) in each soil layer was equal to the dry
mass (g) divided by the sectional area (m2) of eight steel soil
corers.

Calculations and Statistical Analysis
Fine root biomass and necromass were estimated using the
collected samples from the sequential soil coring technique
during the one-year measurement period in different seasons
(Spring: March–May; Summer: June–August; Autumn:
September–November; Winter: December–February). The
root mass of a season was the average mass in 3 months. In
addition, fine root production was estimated from sequential soil
cores and calculated by the balancing the living and dead fine
root mass compartments according the method of the Decision
Matrix (DM). The production between two continuous seasons
was calculated either by adding the differences in biomass
and necromass, by adding only the differences in biomass,
or by equalling production to zero depending on the relative
changes of biomass and necromass (Xiong et al., 2017). Detailed
descriptions of the DM can be found in Brunner et al. (2013).

Multi-way analysis of variance (ANOVA) was used to examine
the effect of vegetation type, season, soil depth and block on
fine root biomass, necromass, and total fine root (living + dead)
mass. Differences in biomass among vegetation types, seasons,
or soil layers were determined by one-way ANOVA followed
by the Tukey test. Differences in production among soil layers
and vegetation types were also determined by one-way ANOVA
followed by the Tukey test. Log transformation were conducted
prior to analysis in order to meet ANOVA requirements for
homogeneity of variance (Xiong et al., 2017). All the statistical
analyses were performed using the R3.3.2 software (R Core
Team, 2016). In all case, the accepted significance level was
α = 0.05.

RESULTS

We found that the vegetation type, soil layer, and season have
significant effects on fine root biomass and necromass, and
that the effects of the interactions of vegetation type and soil
layer were significant (Table 2). The total fine root mass (0–
30 cm depth) was 187.00 g m−2 in grasslands, 303.11 g m−2 in
shrublands, 224.28 g m−2 in secondary forests, and 212.84 g m−2

in primary forests, respectively. The standing fine root biomass
showed higher values than fine root necromass in different stages
of vegetation restoration (Figure 2).

Fine root biomass, necromass, and total fine root mass (live+
dead) varied seasonally (Figure 3). Fine root biomass of all the
four vegetation types increased from spring, peaked in autumn,
and declined in winter. However, fine root necromass showed the
lowest value in autumn. The necromass decreased from spring to
autumn, and then increased from autumn to winter in grasslands,
shrublands, and primary forests. The seasonal change in total fine
root mass showed a single peak. The peak value occurred during
summer in grasslands and secondary forests, whereas it occurred
during autumn in shrublands and primary forests.

Fine root biomass, necromass, and total mass were
concentrated to the surface soil (0–10 cm depth) and decreased
with increasing soil depth (Figure 4). The biomass in the 0–10 cm
soil layer were significantly higher than that in other soil layers,
respectively. The vertical distribution of fine roots differed among
the four vegetation types. In the uppermost soil layer, the fine
root biomass and total fine root mass could be ordered as follows:
secondary forests > primary forests > shrublands > grasslands.
However, in the 10–20 and 20–30 cm soil layers, the secondary
forests had the lowest biomass. Necromass in the shrublands
in all the three soil layers were higher than that in the other
vegetation types. In addition, similar patterns were found in total
fine root mass in the 10–20 and 20–30 cm soil layers.

Annual fine root production ranged between 55.74 and
100.84 g m−2 year−1 across the soil layers (i.e., to a depth
of 30 cm), and it could be ordered as follows: secondary
forests > primary forests > shrublands > grasslands (Figure 5).
The production in the surface layer (0–10 cm) accounted for
41.30–71.51% of the production in all the soil layers, and the
production decreased with increasing soil depth.

TABLE 2 | Effects of vegetation, season, soil layer, and block on fine root biomass and necromass using analysis of variance.

Fine root biomass Fine root necromass

Source df Sum of squares F-value P-value Sum of squares F-value P-value

Block 2 0.23 0.731 0.4839 0.17 0.666 0.516

Vegetation 3 15.03 32.130 < 0.001 19.02 49.828 < 0.001

Season 3 1.56 3.340 0.023 7.85 20.571 < 0.001

Layer 2 93.36 299.315 < 0.001 55.70 218.899 < 0.001

Vegetation × season 9 0.83 0.594 0.797 1.53 1.333 0.225

Vegetation × layer 6 15.80 16.889 < 0.001 3.79 4.965 < 0.001

Season × layer 6 1.43 1.533 0.173 1.28 1.680 0.136

Vegetation × season × layer 18 2.25 0.800 0.691 3.10 1.354 0.168

Data were ln(x + 1) transformed, italicized and bold fonts indicate significant differences at p < 0.05.
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FIGURE 2 | Fine root biomass in the four vegetation restoration stages. The
value is the average biomass across four seasons. Error bars represent
standard deviation of total biomass. Different letters indicate significant
differences between vegetation types (p < 0.05). Letters in lower position
represent live fine root, letters in middle position represent dead fine root,
letters in upper position represent total mass.

DISCUSSION

Trends in aboveground biomass along vegetation restoration
gradient or stand age have been extensively studied (Liu et al.,
2016, 2015; Zhang et al., 2017). However, few studies have
been carried out on the changes in belowground biomass
along vegetation recovery or succession stages. In addition,
quantification of fine root biomass is significant for belowground
ecosystems due to its crucial role in soil organic matter
accumulation and nutrient absorption (Meng et al., 2018). In
the present study, the fine root biomass, necromass, the total
fine root mass, and fine root production were estimated along a
post-agriculture succession sequence in a karst region Southwest
China. The results showed that fine root dynamics change
with vegetation succession. Fine root biomass, necromass, total
fine root mass was the largest in shrublands. The successional
changes in tree density with stand development could contribute
to the observed patterns. In this study, the fine root biomass
of secondary forests and primary forests in the 0–30 cm
soil layer was lower than that in non-karst communities
in a subtropical region (Hunan Province) that included 10-
and 24-year-old mixed plantations of Pinus massoniana and
Cinnamomum camphora (Shu et al., 2018), but similar to that
of the 45-year-old stands. Moreover, the fine root biomass of
karst vegetation in Maolan, bordering our study area, show
similar results (Ni et al., 2015). Consistent with our findings,
the change in fine root biomass and production have been
reported to peak in middle stage of succession (Figures 2, 5).
For example, Yuan and Chen (2012) showed that the fine
root production increased with stand development, and then
declined. Sun et al. (2015) found that intermediate-aged stand

had the highest fine root biomass across a Betula platyphylla
chronosequence.

Fine roots constitute a very dynamic part of the root systems,
which are usually responsive to changes in soil temperature,
moisture, and nutrient content (Liu et al., 2014; Xiong et al.,
2017). In the present study, the fine root biomass, necromass,
and total fine root mass in the four vegetation restoration stages
showed different seasonal variation patterns that increased or
decreased at different points in time. These results could be
due to differences in the microclimate in the understory (water
availability, soil temperature), community phenological patterns,
or phyto-community diversity (Fukuzawa et al., 2007; Xiong
et al., 2017). The fine root biomass increased in spring, peaked
from summer to autumn, and decreased in winter. Another study
demonstrated that the maximum fine root biomass occurred
in autumn owing to fine root production during the growing
season (Brassard et al., 2009; Hansson et al., 2013). In the
forest ecosystems, the fine root biomass showed a relatively high
seasonal fluctuation (i.e., a higher variable coefficient in primary
and secondary forests than in shrublands and grasslands). This
is likely due to the responses to the greater species richness in
forests than in shrublands and grasslands, which was shown in
our previous study (Du et al., 2013; Hu et al., 2017). It suggested
that species-rich forests possess a higher resistance capacity under
environmental stress, such as soil water and nutrients. In the
present study, fine root necromass in the four vegetation types
exhibited different tendencies with seasonal changes in fine root
biomass, and the lowest abundance of necromass among all the
vegetation types were found in autumn. This result could be
attributed to higher temperature and decreased soil moisture in
summer, and to low temperature in winter (Konôpka et al., 2006).
Konôpka et al. (2006) concluded that necromass in mid-growing
season was significantly less than that in the beginning and end of
the growing season. The seasonality of fine root mass suggested
that root sampling in different seasons is necessary to obtain a
complete overview of the dynamic of fine root biomass.

Our findings showed that the fine root biomass, necromass,
and total fine root mass in the four vegetation types decreased
with soil depth (Figures 4, 5). More than 57% of the mass
was confined to uppermost 10 cm of the soil layer. The
high density of fine roots within a few centimeters from the
soil surface is crucial for acquiring nutrients. Several studies
demonstrate the decreasing trend in the soil profile (Fukuzawa
et al., 2007; Yuan and Chen, 2010; Liu et al., 2014; Sun et al.,
2015). Although fine root biomass of all the vegetation types
decreased with soil depth, the vertical live fine root-distribution
patterns were not the same. The vertical distribution of fine
root biomass decreased more sharply in forests (especially
in the secondary forests) than in the other vegetation types.
Moreover, Liu et al. (2014) suggested that the vertical distribution
patterns of fine roots decreased more sharply in the species-
rich community than in the species-poor community. In our
study area, we also found more plant species in forests (128
species in primary forest, 153 species in secondary forest) than
in other vegetation types (87 species in shrubland, 26 species
in grassland) (Hu et al., 2017). In the present study, the order
of fine root biomass proportion in the deeper layer (10–30 cm)
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FIGURE 3 | Seasonal variations in fine root biomass, necromass, and total mass in the four vegetation restoration stages. Error bars represent standard deviation.
Different letters represent significant differences among seasons within each vegetation type (p < 0.05).
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FIGURE 4 | Vertical distribution of fine root biomass, necromass, and total
mass in the four vegetation restoration stages. L1, 0–10 cm soil layer; L2,
10–20 cm soil layer; L3, 20–30 cm soil layer. Error bars represent standard
deviation. Different letters indicate significant differences among soil layers
within each vegetation type (p < 0.05).

could be ordered as follows: shrubland > grassland > primary
forest > secondary forest, which suggested that root systems of
early-successional communities were more effective in exploring
nutrients and water in deep soils. Yuan and Chen (2010) also
found that early-successional species had higher proportion of

FIGURE 5 | Fine root production in different soil layers in the four vegetation
types. L1, 0–10 cm soil layer; L2, 10–20 cm soil layer; L3, 20–30 cm soil layer;
All, 0–30 cm soil layer. Error bars represent standard deviation. Different
lowercase letters indicate significant differences among soil layers within each
vegetation type (p < 0.05). Different capital letters indicate significant
differences between vegetation types (p < 0.05).

roots in deeper soil layers than the late-successional species
had. In addition, the production of fine roots decreased with
increasing soil depth (Figure 5), and similar vertical distributions
were observed in numerous previous studies (Fukuzawa et al.,
2007; Yuan and Chen, 2012; Hansson et al., 2013; Sun et al.,
2015). This distribution pattern may result from the change in
soil water content, nutrient content, and bulk density in the soil
profile (Fukuzawa et al., 2007; Ostonen et al., 2011; Sun et al.,
2015). Looking to the future, we recommend additional studies
that explore individual non-linear models to better understand
changes in the fine root biomass over time and the factors
involved, as shown for aerial biomass in previous studies (Girona
et al., 2017).

CONCLUSION

The present study elucidated the vertical distribution and
seasonal patterns of fine root biomass along vegetation
restoration gradients in karst areas of Southwest China. Our
results showed significant effects of vegetation restoration stages,
seasons, and soil layers on fine root biomass and necromass.
The dynamics of fine root biomass, necromass, and total fine
root mass peaked in shrublands. The fine root biomass peaked
in autumn, when the lowest fine root necromass was observed.
High fine root biomass found in the upper soil layer, showed a
continuous decrease with soil depth in all the vegetation types
studied. Fine root production showed similar vertical patterns as
that of fine root biomass, and the former showed a single peak
during the vegetation restoration process. Overall, knowledge
of spatiotemporal patterns of the dynamics of root systems
contribute to our understanding of underground processes,
which might help in evaluating the carbon cycle in the karst

Frontiers in Plant Science | www.frontiersin.org 7 January 2019 | Volume 9 | Article 2001

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-02001 January 10, 2019 Time: 14:49 # 8

Du et al. Fine Root Biomass Spatial-Temporal Pattern

area studied. In karst regions, the conversion of degraded land to
forest can effectively improve the productivity of underground
ecosystems, and greater attention should be paid to the upper
soil layers. However, the optimum status of vegetation restoration
(community structure and diversity) for improving underground
ecological function needs further elucidation.
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