1,281 research outputs found
Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells
The conversion of greenhouse gas CO2 into novel materials is the most promising approach to solve greenhouse gas issues. Herein, we report for the first time the reaction of potassium with CO2 to synthesize three-dimensional honeycomb-like structured graphene (3DHG). Furthermore, 3DHG exhibited excellent performance as a counter electrode for hole transport material (HTM)-free perovskite solar cells, leading to a power conversion efficiency of 10.06%. This work constitutes a new aspect of potassium chemistry for material synthesis from a greenhouse gas and the generation of electrical energy from sunlight.Fil: Wei, Wei. Michigan Technological University; Estados UnidosFil: Hu, Baoyun. Tongji University; ChinaFil: Jin, Fangming. Shanghai Jiao Tong University; ChinaFil: Jing, Zhenzi. Tongji University; ChinaFil: Li, Yuexiang. Nanchang University; ChinaFil: Garcia Blanco, Andres Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; ArgentinaFil: Stacchiola, Dario Jose. Brookhaven National Laboratory; Estados UnidosFil: Hu, Yun Hang. Michigan Technological University; Estados Unido
Carbonate-superstructured solid fuel cells with hydrocarbon fuels
A basic requirement for solid oxide fuel cells (SOFCs) is the sintering of electrolyte into a dense impermeable membrane to prevent the mixing of fuel and oxygen for a sufficiently high open-circuit voltage (OCV). However, herein, we demonstrate a different type of fuel cell, a carbonate-superstructured solid fuel cell (CSSFC), in which in situ generation of superstructured carbonate in the porous samarium-doped ceria layer creates a unique electrolyte with ultrahigh ionic conductivity of 0.17 S.cm21 at 550 °C. The CSSFC achieves unprecedented high OCVs (1.051 V at 500 °C and 1.041 V at 550 °C) with methane fuel. Furthermore, the CSSFC exhibits a high peak power density of 215 mW.cm22 with dry methane fuel at 550 °C, which is higher than all reported values of electrolyte-supported SOFCs. This provides a different approach for the development of efficient solid fuel cells
Dual-Band Eight-Element MIMO Array Using Multi-Slot Decoupling Technique for 5G Terminals
This paper presents a dual-band eight-element multiple-input multiple-output (MIMO) array using a multi-slot decoupling technique for the fifth generation (5G) mobile communication. By employing a compact dual-loop antenna element, the proposed array obtains two broad bandwidths of 12.2% and 15.4% for sub-6GHz operation. To reduce the mutual coupling between antenna elements, a novel dual-band decoupling method is proposed by employing a multi-slot structure. The proposed MIMO array achieves 15.5-dB and 19.0-dB isolations across the two operating bands. Furthermore, three decoupling modes generated by different bent slots can be independently tuned. Zero ground clearance is also realized by the coplanar arrangement of the antenna elements and decoupling structures. The proposed MIMO array was simulated, fabricated, and measured. Experimental results agree well with the simulations, showing that the dual-band MIMO array has good impedance matching, high isolation, and high efficiency. In addition, the envelope correlation coefficient and channel capacity are calculated and analyzed to validate the MIMO performance of the 5G terminal array. Such a dual-band high-isolation eight-element MIMO array with zero ground clearance is a promising candidate for 5G or future mobile applications
Global dynamic scaling relations of HI-rich ultra-diffuse galaxies
The baryonic Tully-Fisher relation (BTFR), which connects the baryonic mass
of galaxies with their circular velocities, has been validated across a wide
range of galaxies, from dwarf galaxies to massive galaxies. Recent studies have
found that several ultra-diffuse galaxies (UDGs) deviate significantly from the
BTFR, indicating a galaxy population with abnormal dynamical properties.
However, such studies were still confined within a small sample size. In this
study, we used the 100% complete Arecibo Legacy Fast Arecibo L-band Feed Array
(ALFALFA) to investigate the BTFR of 88 HI-rich UDGs (HUDGs), which is the
largest UDG sample with dynamical information. We found that the HUDGs form a
continuous distribution in the BTFR diagram, with high-velocity galaxies
consistent with normal dwarf galaxies at 1 level, and low-velocity
galaxies deviating from the BTFR, in line with that reported in the literature.
We point out that the observed deviation may be subject to various selection
effects or systemic biases. Nevertheless, we found that the significance of the
deviation of HUDGs from the BTFR and TFR are different, i.e., they either
deviate from the BTFR or from the TFR. Our result indicates that a high-gas
fraction may play an important role in explaining the deviation of HUDGs from
BTFR.Comment: 12 pages, 9 figures, 1 table, accepted for publication in ApJ
Dynamic Feature Pruning and Consolidation for Occluded Person Re-Identification
Occluded person re-identification (ReID) is a challenging problem due to
contamination from occluders, and existing approaches address the issue with
prior knowledge cues, eg human body key points, semantic segmentations and etc,
which easily fails in the presents of heavy occlusion and other humans as
occluders. In this paper, we propose a feature pruning and consolidation (FPC)
framework to circumvent explicit human structure parse, which mainly consists
of a sparse encoder, a global and local feature ranking module, and a feature
consolidation decoder. Specifically, the sparse encoder drops less important
image tokens (mostly related to background noise and occluders) solely
according to correlation within the class token attention instead of relying on
prior human shape information. Subsequently, the ranking stage relies on the
preserved tokens produced by the sparse encoder to identify k-nearest neighbors
from a pre-trained gallery memory by measuring the image and patch-level
combined similarity. Finally, we use the feature consolidation module to
compensate pruned features using identified neighbors for recovering essential
information while disregarding disturbance from noise and occlusion.
Experimental results demonstrate the effectiveness of our proposed framework on
occluded, partial and holistic Re-ID datasets. In particular, our method
outperforms state-of-the-art results by at least 8.6% mAP and 6.0% Rank-1
accuracy on the challenging Occluded-Duke dataset.Comment: 12 pages, 9 figure
Synergism of Rana catesbeiana ribonuclease and IFN-γ triggers distinct death machineries in different human cancer cells
AbstractRana catesbeiana ribonuclease (RC-RNase) possesses tumor-specific cytotoxicity, which can be synergized by IFN-γ. However, it is unclear how RC-RNase and RC-RNase/IFN-γ induce cell death. In this study, we use substrate cleavage assays to systematically investigate RC-RNase- and RC-RNase/IFN-γ-induced caspase activation in HL-60, MCF-7, and SK-Hep-1 cells. We find that RC-RNase and RC-RNase/IFN-γ induce mitochondria-mediated caspase activation in HL-60 and MCF-7 cells but not in SK-Hep-1 cells, although death of SK-Hep-1 cells is closely related to mitochondrial disruptions. Our findings provide evidence that RC-RNase and RC-RNase/IFN-γ can kill different cancer cells by distinct mechanisms. Compared with onconase, RC-RNase seems to harbor a more specific anti-cancer activity
Recommended from our members
Effects of florfenicol exposure during early life on toxicity, gut microbiota, and fecal metabolome in SD rats
Florfenicol (FLO) is a third-generation veterinary antibiotic with a high residue detection rate in food, which cause the toxicity of FLO even at low doses, receiving notable attention. The impact of FLO exposure during early life on health and gut microbiota is still unclear. Here, the effects of FLO exposure on toxicity, gut microbiota, drug resistance genes, and the fecal metabolome during early life were investigated in suckling Sprague-Dawley (SD) rats. The results showed that FLO exposure during early life significantly increased the body weight, and WBC and LY levels in the blood, induced inflammation in the liver and intestines. FLO had a dose-dependent effect on the alpha and beta diversity of the gut microbiota, increasing the ratio of Firmicutes to Bacteroides and the abundance of some pathogenic bacteria, and changing the abundance of bacteria related to energy metabolism and inflammation, also promoted the enrichment of drug resistance genes. The fecal metabolome also demonstrated the effect of FLO exposure on metabolic pathways related to energy metabolism and inflammation. In conclusion, this research shows that FLO exposure during early life can lead to excessive weight gain, an inflammatory response, gut microbiota imbalance, the enrichment of drug resistance genes, and effects on related metabolic pathways
- …