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Abstract Rana catesbeiana ribonuclease (RC-RNase) pos-
sesses tumor-specific cytotoxicity, which can be synergized by
IFN-c. However, it is unclear how RC-RNase and RC-RNase/
IFN-c induce cell death. In this study, we use substrate cleavage
assays to systematically investigate RC-RNase- and RC-RNase/
IFN-c-induced caspase activation in HL-60, MCF-7, and SK-
Hep-1 cells. We find that RC-RNase and RC-RNase/IFN-c in-
duce mitochondria-mediated caspase activation in HL-60 and
MCF-7 cells but not in SK-Hep-1 cells, although death of SK-
Hep-1 cells is closely related to mitochondrial disruptions. Our
findings provide evidence that RC-RNase and RC-RNase/IFN-
c can kill different cancer cells by distinct mechanisms. Com-
pared with onconase, RC-RNase seems to harbor a more specific
anti-cancer activity.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Rana catesbeiana ribonuclease (RC-RNase) derived from

oocytes of R. catesbeiana and onconase from those of Rana

pipiens share �50% amino acid sequence identity and contain

an identical lectin domain that may be responsible for the

tumoricidal effect of the two ribonucleases [1,2]. Cell death

machineries initiated by these frog oocyte-derived ribonucle-

ases still remain unclear.

Cellular proteases named caspases are known to mediate

apoptotic cell death and two autonomous but cross-talking

caspase activation pathways have been identified [3–5]. For

receptor-mediated apoptosis, the initiator caspase-8/execu-

tioner caspase-3 pathway is activated via binding of ligands

onto the cell surface death receptors (e.g., FasL/Fas). For
Abbreviations: XTT, sodium 3 0-[1-(phenylamino-carbonyl)-3,4-tetra-
zolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate; RC-
RNase, Rana catesbeiana ribonuclease; PARP, poly(ADP-ribose)
polymerase
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mitochondria-mediated apoptosis, the initiator caspase-9/exe-

cutioner caspase-3 pathway is activated in response to homeo-

static alterations of mitochondria. As a close relative to

caspase-3, caspase-7 can also be activated by caspase-8 or cas-

pase-9 to be an executioner protease. Both caspase-3 and -7

can lead to the proteolytic cleavage of other caspases (e.g., cas-

pase-2 and -6) and numerous cellular substrates like poly

(ADP-ribose) polymerase (PARP) [3].

We have previously reported that caspase-7 is activated in

the RC-RNase-treated caspase-3-deficient MCF-7 cells, while

there is no activation of its upstream caspase-9 or caspase-8;

that caspase-7 can in succession process procaspase-2, procas-

pase-6 and PARP; and that Bcl-XL, an anti-apoptotic mito-

chondrial protein, can efficiently rescue MCF-7 cells from

RC-RNase-induced cell death [6]. We also found that the cas-

pase-9/caspase-3 pathway is activated in RC-RNase-treated

undifferentiated HL-60 cells, suggesting that RC-RNase-in-

duced caspase activation is initiated from mitochondria [7].

RC-RNase and IFN-c were found to have synergistic

tumoricidal effect in three hepatoma cell lines bearing different

differentiation stages, and such an effect was shown to be espe-

cially prominent in poorly differentiated SK-Hep-1 cells [8].

Although RC-RNase/IFN-c treatment had caused a massive

death in SK-Hep-1 cells, there was neither apoptotic nor ne-

crotic feature observed in these cells [8]. Together with evi-

dence that mitochondrial disruptions were observed in HeLa

cells treated with RC-RNase (unpublished data) and in SK-

Hep-1 cells treated with RC-RNase/IFN-c [8], we suggested

that RC-RNase-induced cell death might be initiated from

mitochondrial disruptions.

In this present study, we used a more sensitive method to

systematically investigate RC-RNase- and RC-RNase/IFN-

c-induced caspase activation in HL-60, MCF-7, and SK-Hep-1

cells. We showed that RC-RNase- or RC-RNase/IFN-c-in-
duced caspase activation could vary in different cell types, sug-

gesting that distinct death machineries were triggered. We also

showed that theRC-RNase/IFN-c regimen could bemuchmore

specific in killing tumor cells than the onconase/IFN-c regimen.
2. Materials and methods

2.1. Reagents and cell culture
RC-RNase was purified using the modified methods published pre-

viously [6,9]. Caspase-3, caspase-7, PARP, and actin monoclonal anti-
bodies were purchased, respectively, from Imgenex, Oncogene,
blished by Elsevier B.V. All rights reserved.
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Pharmingen, and Chemicon. DMSO was purchased from Merck.
Ac-LEHD-pNA (acetyl–Leu–Glu–His–Asp–p-nitroanilide), Ac-DE-
VD-pNA (acetyl-Asp–Glu–Val–Asp–p-nitroanilide), and Ac-IETD-
pNA (acetyl-Ile–Glu–Thr–Asp–p-nitroanilide) were purchased from
Anaspec. Sodium 3 0-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-
bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate (XTT) assay kits
were purchased from Roche. Human HL-60 promyelocytic leukemia
cells, human MCF-7 breast carcinoma cells, and human SK-Hep-1
hepatoma cells were obtained from the American Type Culture Collec-
tion and cultured in Dulbecco�s modified Eagle�s medium (Gibco) sup-
plemented with 10% heat-inactivated fetal bovine serum (Hyclone), 2
mM LL-glutamine (Gibco), 100 IU/ml penicillin G sodium (Gibco),
100 lg/ml streptomycin sulfate (Gibco), 1 mM sodium pyruvate
(Sigma), and 0.1 mM non-essential amino acids (Gibco).

2.2. Cell viability assay
Cell viability was evaluated by using XTT assays that detect activity

of mitochondrial dehydrogenases. Briefly, 2 · 103 cells were grown in
each well of 96-well cell culture plates overnight. On the next day, cells
were treated with RC-RNase (20 lg/ml), onconase (20 lg/ml), IFN-c
(10 ng/ml), or the combined treatments. XTT assays were performed
every 24th hour according to the manufacturer�s instructions. Absor-
bance at 492 nm was determined by a multi-well ELISA reader (Molec-
ular Devices).

2.3. Caspase activity assay
Cells were resuspended in the lysis buffer (50 mM Tris–HCl, 120 mM

NaCl, 1 mM EDTA, and 1% NP-40, pH 7.5) supplemented with pro-
tease inhibitors. Insoluble pellets were removed by centrifugation using
15000 · g at 4 �C for 20 min. The caspase activity assay was performed
in a reaction containing 40 ll cell lysates (80 lg total protein), 158 ll
reaction buffer (20% glycerol, 0.5 mM EDTA, 5 mM dithiothreitol,
and 100 mM HEPES, pH 7.5), and 2 ll fluorogenic Ac-LEHD-pNA,
Ac-DEVD-pNA, or Ac-IETD-pNA substrates (100 lM final concen-
tration); the reaction was incubated at 37 �C for 6 h (in this condition,
all substrates were not used up and the caspase activity could be com-
pared in the linear range). The fluorogenic substrate cleavage readout
was the p-nitroanilide release as detected at 405 nm in an ultra-micro-
plate reader (Bio-Tek instruments). Fold increase in caspase activity
was calculated by comparing the A405 readout from the induced sam-
ple with that from the un-induced control using the following formula:
(A405sample � A405control)/A405control.

2.4. Immunoblot analysis
Cells were harvested by cell scrapers and lysed in RIPA buffer (10

mM Tris–base, pH 7.4; 150 mMNaCl; 1% NP-40; 0.5% sodium deoxy-
cholate; and 0.1% SDS) containing protease inhibitors (Calbiochem).
Equal amount of the total proteins was loaded onto a SDS–PAGE
(13% acrylamide) gel, electrophoresed, and transferred to polyvinyli-
dene difluoride membrane (Amersham). Membranes were blocked
with 5% skimmed milk and 1% NP-40 in TBS-T (0.8% NaCl; 0.02%
KCl; 25 mM Tris–HCl; and 0.05% Tween 20, pH 7.4) for 2 h, incu-
bated with the primary antibody (1:500 dilution in the blocking buffer)
at 4 �C overnight, and subsequently incubated with biotinylated anti-
mouse IgG (1:2000 dilution in the blocking buffer) and streptavidin–
horseradish peroxidase conjugates (1:4000 dilution in TBS). The
membranes were developed using the Super Signal� Chemilumines-
cent-HRP substrate system (Pierce) for protein visualization.
Fig. 1. The five-day survival rates of HL-60 (A), MCF-7 (B), and SK-
Hep-1 (C) cells after RC-RNase (20 lg/ml), IFN-c (10 ng/ml), and
RC-RNase (20 lg/ml)/IFN-c (10 ng/ml) treatments. Note that RC-
RNase-induced cytotoxicity was enhanced by IFN-c inMCF-7 cells and
SK-Hep-1 cells, but not in HL-60 cells. Data were obtained from three
independent triplicate experiments and presented as means ± S.D.
3. Results

3.1. IFN-c enhanced RC-RNase-induced cell death in SK-Hep-1

cells and MCF-7 cells but not in HL-60 cells

We treated HL-60, MCF-7, or SK-Hep-1 cells with RC-

RNase (20 lg/ml) and RC-RNase (20 lg/ml)/IFN-c (10 ng/

ml) for 5 days and assessed the cell viability by the XTT assay,

which measured the activity of mitochondrial dehydrogenases.

While IFN-c alone showed little adverse effect on the three

cancer cell lines, RC-RNase treatments were cytotoxic to these

lines. Noticeably, RC-RNase per se could induce much more
devastating death to HL-60 cells (Fig. 1A) and MCF-7 cells

(Fig. 1B) than to SK-Hep-1 cells (Fig. 1C), suggesting that it

exerted distinct potencies to different cancer cell lines. The

combined treatments of RC-RNase (20 lg/ml) and IFN-c
(10 ng/ml) exerted a significant synergistic effect in MCF-7

and SK-Hep-1 cells (Fig. 1B and C), but not in HL-60 cells

(Fig. 1A).

3.2. Caspase activation in HL-60, MCF-7, and SK-Hep-1 cells

after RC-RNase or RC-RNase/IFN-c treatments

We first treated the three cell lines with RC-RNase (20 lg/
ml), IFN-c (10 ng/ml), or RC-RNase (20 lg/ml)/IFN-c (10

ng/ml) for 48 or 96 h and measured caspase activity using flu-

orogenic substrate cleavage assay. We measured the caspase-9,

caspase-3-like, and caspase-8 activities by incubating cell ly-

sates, respectively, with fluorogenic substrates, Ac-LEHD-

pNA, Ac-DEVD-pNA, or Ac-IETD-pNA.

In HL-60 cells, caspase-9, caspase-3-like, and caspase-8

activities were all detected after RC-RNase or RC-RNase/

IFN-c treatments (Fig. 2). Caspase-9 was fully activated in

the first 48 h after treatments (Fig. 2A); however, caspase-3-



Fig. 3. Caspase activation in MCF-7 cells after RC-RNase (20 lg/ml),
IFN-c (10 ng/ml), or RC-RNase (20 lg/ml)/IFN-c (10 ng/ml)
treatments. Note that caspase-3-like activity significantly increased
after treatments with RC-RNase or RC-RNase/IFN-c for 96 h, and
that IFN-c could aggravate caspase-3-like activity (B). Caspase-9 (A)
or caspase-8 (C) was not activated by any of the treatments. The data
are presented as means ± S.D. from three independent triplicate
experiments.

Fig. 2. Caspase activation in HL-60 cells after RC-RNase (20 lg/ml),
IFN-c (10 ng/ml), or RC-RNase (20 lg/ml)/IFN-c (10 ng/ml)
treatments. Note that caspase-9 (A), caspase-3-like (B), and caspase-
8 (C) activities significantly increased after RC-RNase or RC-RNase/
IFN-c treatments; that caspase-9 was found to have been fully
activated in the first 48 h; and that IFN-c did not aggravate caspase
activation in HL-60 cells. The data are presented as meanss ± S.D.
from three independent triplicate experiments.

C.-H.A. Tang et al. / FEBS Letters 579 (2005) 265–270 267
like and caspase-8 activities were found to increase in a timely

dependent fashion, in which the 96-h treatment induced a

more significant activation of the two caspases than the 48-h

treatment (Fig. 2B and C). The earlier activation of caspase-

9 suggested that RC-RNase-induced death of HL-60

cells should be initiated from mitochondrial alterations.

Interestingly, IFN-c showed no effect in enhancing the RC-

RNase-induced caspase activation in HL-60 cells.

While caspase-9 or caspase-8 activity did not increase in

MCF-7 cells after RC-RNase or RC-RNase/IFN-c treat-

ments (Fig. 3A and C), caspase-3-like activity increased sig-

nificantly after both treatments for 96 h (Fig. 3B). Notably,

cells treated with RC-RNase/IFN-c had much higher cas-

pase-3-like activity than those treated with RC-RNase alone

(Fig. 3B), suggesting that IFN-c could aggravate RC-

RNase-induced death via enhancing caspase-3-like activity

in these cells. Since MCF-7 cells are caspase-3-deficient, the

caspase-3-like activity detected in this cell type should repre-

sent caspase-7 activation.
Previously, RC-RNase- or RC-RNase/IFN-c was shown to

induce death of SK-Hep-1 cells, which had atypical apoptotic

and necrotic features [8]. Although RC-RNase/IFN-c had

been shown to cause severe mitochondrial disruptions in SK-

Hep-1 cells [8], both RC-RNase and RC-RNase/IFN-c could

not induce changes of caspase-9 (Fig. 4A), caspase-3-like

(Fig. 4B), and caspase-8 (Fig. 4C) activities in SK-Hep-1 cells

after 48-h or 96-h treatments, indicating that such a death

mechanism has little to do with caspase activation.

3.3. A distinct executioner caspase was activated in different cell

types after RC-RNase and RC-RNase/IFN-c treatments

In HL-60 cells that express both caspases-3 and caspase-7,

only caspase-3 was activated by RC-RNase (data not shown;

[7]) and RC-RNase/IFN-c (Fig. 5, lanes 1–3) treatments,

indicating that the increased caspase-3-like activity in RC-

RNase- and RC-RNase/IFN-c-treated HL-60 cells was

mainly due to caspase-3 activation (Fig. 2B). In the



Fig. 4. Lack of caspase activation in SK-Hep-1 cells after RC-RNase
(20 lg/ml), IFN-c (10 ng/ml), or RC-RNase (20 lg/ml)/IFN-c (10 ng/
ml) treatments. Note that none of the three treatments significantly
altered caspase-9 (A), caspase-3-like (B), and caspase-8 (C) activities.
The data are presented as means ± S.D. from three independent
triplicate experiments.

Fig. 5. Cleavage of executioner caspases as a response to the RC-
RNase/IFN-c treatment. HL-60 cells (lanes 1–3), MCF-7 cells (lanes
4–6), and SK-Hep-1 cells (lanes 7–9) were treated with RC-RNase (20
lg/ml)/IFN-c (10 ng/ml) for 0 h (lanes 1, 4, and 7), 48 h (lanes 2, 5, and
8), and 96 h (lanes 3, 6, and 9); lysed in RIPA buffer; and
immunoblotted using antibodies to indicated molecules. Note that
the 32-kDa procaspase-3 but not the 35-kDa procaspase-7 was cleaved
in HL-60 cells; that the 35-kDa procaspase-7 was cleaved to generate
the 20-kDa active caspase-7 in caspase-3-deficient MCF-7 cells; that
both procaspase-3 and procaspase-7 were not cleaved in SK-Hep-1
cells; and that the 116-kDa PARP was processed into an 89-kDa
fragment in HL-60 and MCF-7 cells, but not in SK-Hep-1 cells.
Detection of actin served as the protein loading control.

Fig. 6. Specific tumoricidal activity of RC-RNase. The five-day
survival rates of SK-Hep-1 cells (A) and HS-68 cells (B) were obtained
after treatments with RC-RNase (20 lg/ml), onconase (20 lg/ml),
IFN-c (10 ng/ml), or the indicated combinations. Note that RC-RNase
alone had a milder tumoricidal activity to SK-Hep-1 cells when
compared with onconase. However, the tumoricidal activity of RC-
RNase could be enhanced by IFN-c synergistically. Also note that RC-
RNase and RC-RNase/IFN-c treatments did not affect the primary
HS-68 fibroblasts, while onconase and onconase/IFN-c treatments did.
Data were obtained from three quadruple groups and presented as
means ± S.D.
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caspase-3-null MCF-7 cells, caspase-7 was activated in res-

ponse to RC-RNase (data not shown; [6]) and RC-RNase/

IFN-c (Fig. 5, lanes 4–6) treatments; this suggested that

the increased caspase-3-like activity in RC-RNase- and

RC-RNase/IFN-c-treated MCF-7 cells was due to caspase-

7 activation (Fig. 3B). In SK-Hep-1 cells that express cas-

pase-3 and caspase-7, both caspases were not activated after

RC-RNase or RC-RNase/IFN-c treatments (data not shown;

Fig. 5, lanes 7–9). Such results confirmed our data showing

no increased caspase-3-like activity in RC-RNase- and RC-

RNase/IFN-c-treated SK-Hep-1 cells (Fig. 4B). In addition,

while PARP could be cleaved by caspase-3 in RC-RNase-

or RC-RNase/IFN-c-treated HL-60 cells ([7]; Fig. 5, lanes

1–3) and by caspase-7 in RC-RNase- or RC-RNase/IFN-c-
treated MCF-7 cells ([6]; Fig. 5, lanes 4–6), it was not

cleaved in RC-RNase- or RC-RNase/IFN-c-treated SK-

Hep-1 cells (data not shown; Fig. 5, lanes 7–9). This again

suggested that the death mechanism activated by RC-RNase

or RC-RNase/IFN-c in SK-Hep-1 cells does not involve cas-

pase activation.
3.4. Comparison between RC-RNase–induced and

onconase-induced cytotoxicity in SK-Hep-1 hepatoma

cells and primary human HS-68 foreskin fibroblasts

RC-RNase has been shown to be cytotoxic to various hu-

man cancer cell lines [6–9], but not to normal or immortalized

cells, including human primary HFW fibroblasts [9], human
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primary HS-68 foreskin fibroblasts (Fig. 6B), human primary

WI-38 lung fibroblasts (data not shown), immortalized ham-

ster kidney BHK-21 cells [8], and immortalized murine NIH-

3T3/3 cells [9], suggesting that cytotoxicity of RC-RNase is

cancer-specific. The cytotoxicity of RC-RNase can be syner-

gized by IFN-c in three different hepatoma cells [8] and

MCF-7 cells (Fig. 1B). Such synergistic cytotoxicity is also spe-

cific to cancer cells, since RC-RNase/IFN-c treatments do not

induce death of primary HS-68 cells (Fig. 6B) and BHK-21

cells [8]. Onconase is known to have strong tumoricidal activity

in many cancer cells [10–13], but it is shown here to be very

toxic to primary HS-68 cells (Fig. 6B). Although onconase-

induced cytotoxicity can be exacerbated by IFN-c, such exac-

erbation is minor and can affect not only cancerous SK-Hep-1

cells but also primary HS-68 cells (Fig. 6A and B).
4. Discussion

In RC-RNase- or RC-RNase/IFN-c-treated HL-60 cells, all

three caspases examined are activated (Fig. 2). While caspase-9

activity increases to the maximal extent in the first 48 h and

keeps almost consistent in the total 96-h examination period

(Fig. 2A), both caspase-3 and caspase-8 activities keep increas-

ing throughout the whole period, resulting in a much more

prominent activity after 96-h treatments with RC-RNase or

RC-RNase/IFN-c (Fig. 2B and C). Together with the data

showing that caspase-3 has a more prominent effect than cas-

pase-8 after 96-h treatments (Fig. 2B and C) and previous data

showing that caspase-3 is critical for caspase-8 activation in

mitochondria-mediated apoptosis [14,15], we suggest that in

RC-RNase- or RC-RNase/IFN-c-treated HL-60 cells, cas-

pase-9 is the first to be activated and the activated caspase-9

activates caspase-3, which can in turn activate caspase-8 to am-

plify death signals and ensure the occurrence of apoptosis.

These results clearly show that RC-RNase or RC-RNase/

IFN-c induces caspase-dependent mitochondria-mediated

apoptosis in HL-60 cells.

In RC-RNase- or RC-RNase/IFN-c-treated MCF-7 cells,

caspase-7 is activated without detectable activation of the initi-

ator caspase-9 or -8 (Fig. 3) and caspase-7 is also found to pro-

cess PARP in these treated MCF-7 cells (Fig. 5). It is known

that caspase-7 can be activated not only by caspase-9 but also

by procaspase-9 because the autocatalytic intra-chain cleavage

of procaspase-9 (into capsase-9) has only mild effect on its cat-

alytic activity [16,17] and the catalytic activity of procaspase-9

or caspase-9 is actually dependent on their association with the

other two members, Apaf1 and cytochrome c, in the apopto-

some [17,18]. Together with our data showing that RC-RNase

or RC-RNase/IFN-c triggers cell death by targeting mitochon-

dria [8] and that Bcl-XL can reverse RC-RNase-induced death

in MCF-7 cells [6], we suggest that RC-RNase- or RC-RNase/

IFN-c-treated MCF-7 cells may also undergo caspase-depen-

dent mitochondria-mediated apoptosis.

Although RC-RNase alone or RC-RNase/IFN-c can induce

death of SK-Hep-1 cells, there is no increased caspase-9, cas-

pase-3-like, or caspase-8 activity detected after treatments

(Fig. 4). Such results were confirmed by our immunoblot data

showing lack of processing of initiator procaspase-9 or -8 (data

not shown), executioner procaspase-3 or -7 (Fig. 5), and PARP

(Fig. 5) in RC-RNase/IFN-c-treated SK-Hep-1 cells. Together

with our previous electron microscopy data showing major
mitochondrial disruptions in RC-RNase/IFN-c-treated SK-

Hep-1 cells [8], we suggest that RC-RNase and RC-RNase/

IFN-c may induce death in SK-Hep-1 cells by activating a

novel caspase-independent death pathway, which is closely

related to homeostatic alterations of mitochondria.

Iordanov et al. [19] showed that the caspase-9/caspase-3 cas-

cade was activated in onconase-treated HeLa tk� cells

although activation of this caspase cascade could only be ob-

served when onconase was delivered using a lipofectin-facili-

tated method. Together with the data showing release of

procaspase-9 from mitochondria upon onconase treatment,

they suggested that onconase induced apoptosis via mitochon-

dria-mediated caspase activation [19]. By using a pan-caspase

inhibitor, Grabarek et al. [20] later showed that caspases were

indeed activated in HL-60 cells undergoing onconase-induced

apoptosis; however, the activated caspases were not further

characterized. In this present study, we systematically investi-

gated caspase activation in three different cell lines treated with

RC-RNase, which like onconase is also a cytotoxic ribonucle-

ase derived from frog oocytes. We found that RC-RNase

could induce not only caspase-dependent mitochondria-medi-

ated apoptosis (e.g., in HL-60 and MCF-7 cells) but also cas-

pase-independent mitochondria-mediated apoptosis (e.g., in

SK-Hep-1 cells). Since RC-RNase and onconase are closely re-

lated, it is very likely that both can induce death in different

cancer cells using distinct mechanisms.

RC-RNase induces distinct degree of cytotoxicity in HL-60,

MCF-7, and SK-Hep-1 cells, possibly because these cell lines

have different differentiation stages. We have previously

studied three different hepatoma cell lines bearing distinct dif-

ferentiation stages and reported that RC-RNase-induced

cytotoxicity is differentiation-dependent but not prolifera-

tion-dependent [8]. Our recent study also showed that induc-

tion of differentiation can rescue HL-60 cells from

RC-RNase-induced cytotoxicity [7]. We therefore suggest that

the different degree of RC-RNase-induced cytotoxicity in HL-

60, MCF-7, and SK-Hep-1 cells might also depend on the

intrinsic differentiation status of these three cell lines. If we

can further show that RC-RNase-induced cytotoxicity is also

differentiation-dependent in many other cell types, we think

RC-RNase might be able to serve as a useful tool in defining

the intrinsic differentiation status of cell lines derived from dif-

ferent tissues.

IFN-c has been shown to synergize the RC-RNase-induced

cytotoxicity; however, this synergistic cytotoxicity is not seen

in the HL-60 cells (Fig. 1A). Since RC-RNase-induced cell

death is differentiation-dependent [7,8] and IFN-c is known

to induce differentiation of HL-60 cells [21–23], we suggest

the reason why there is no synergistic cytotoxicity of RC-

RNase and IFN-c in this cell type might be because the differ-

entiation status of HL-60 cells has been altered by IFN-c and

such a change in the differentiation status protects these cells

from the synergistic cytotoxicity.

RC-RNase and RC-RNase/IFN-c have been shown to be

non-toxic to a panel of normal or immortalized cells. Com-

pared with onconase in this study, RC-RNase and RC-

RNase/IFN-c treatments clearly have more tumor-specific

cytotoxicity (Fig. 6). While onconase has reached Phase III

clinical trials in the US as an anti-cancer drug [24,25], we be-

lieve that RC-RNase can also be a promising drug for cancer

therapy. Since different cytotoxicity and caspase activation

have been observed in HL-60, MCF-7, and SK-Hep-1 cells
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after RC-RNase and RC-RNase/IFN-c treatments, the tumor-

icidal mechanisms of RC-RNase and RC-RNase/IFN-c re-

quire deliberate investigation before we pursue their clinical

applications.
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