36,289 research outputs found

    Bending instability characteristics of double-walled carbon nanotubes

    Get PDF
    The bending instability characteristics of double-walled carbon nanotubes (DWNTs) of various configurations are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube interaction energy is calculated using the van der Waals interatomic potential. This study shows that the bending instability may take place through the formation of a single kink in the midpoint of a DWNT or two kinks, placed symmetrically about the midpoint, depending on both the tube length and diameter. The double-kink mode is more favorable for longer DWNTs with the same diameter, and there exists a threshold length for a fixed diameter, below which the single-kink mode occurs at the onset of the bending instability and above which the double-kink mode prevails. The onset characteristic of bending instability is determined by the effectiveness of the intertube interaction in transferring the load from the outer tube onto the inner tube, and the load-transfer effectiveness increases with the increasing tube length. For a fixed length/diameter ratio, the load-transfer effectiveness is found to decrease with the increasing diameter for smaller tubes while it increases for larger tubes, and, thus, the double-kink mode can prevail for both small DWNTs and large DWNTs. ©2005 The American Physical Society.published_or_final_versio

    Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection

    Full text link
    It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.Comment: 7 pages, 4 figures, ApJ, in press (vol. 666, Sept. 2007

    Fourier multipliers for Hardy spaces on graded Lie groups

    Get PDF
    • …
    corecore