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Abstract. In this paper, we investigate the Hp(G) → Lp(G), 0 < p ≤ 1, bounded-
ness of multiplier operators defined via group Fourier transform on a graded Lie group
G, where Hp(G) is the Hardy space on G. Our main result extends those obtained in
[Colloq. Math. 165 (2021), 1–30], where the L1(G)→ L1,∞(G) and Lp(G)→ Lp(G),
1 < p <∞, boundedness of such Fourier multiplier operators were proved.
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1. Introduction

Many problems in harmonic analysis and partial differential equations are related to
the study of Fourier or spectral multipliers for certain function spaces. We start by
recalling the classical Mihlin multiplier theorem. It says that if a function σ(ξ) defined
on Rn\{0} has continuous derivatives up to (bn/2c+ 1)-th order, and satisfies

|∂αξ σ(ξ)| ≤ Cα|ξ|−|α| (1.1)
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for all ξ ∈ Rn\{0} and all multi-indices α ∈ Nn
0 with length |α| ≤ bn/2c + 1, then the

Fourier multiplier operator Tσ associated with σ, initially defined for f ∈ S(Rn) via

Tσf = F−1(σf̂),

extends to a bounded operator on Lp(Rn) for all 1 < p <∞. Hörmander [23] improved
this result by showing that the regularity condition on σ(ξ) could be allowed to be of
fractional order. More precisely he proved that if σ ∈ S ′(Rn) satisfies

sup
t>0
‖η(·)σ(t·)‖W 2

s (Rn) <∞ (1.2)

for some s > n/2, where η is a function in C∞0 (Rn\{0}) such that |η(ξ)| ≥ c > 0 on
some annulus {r1 < |ξ| < r2}, then Tσ extends to a bounded operator on Lp(Rn), for
all 1 < p < ∞. Here W 2

s (Rn) denote the Sobolev spaces on Rn. It is well known that
condition (1.2) is weaker than condition (1.1). Calderón and Torchinsky [4] extended
Mihlin and Hörmander’s multiplier theorem to the case 0 < p ≤ 1, proving that if
σ satisfies (1.2) for some s > n(1/p − 1/2), then Tσ is bounded on the Hardy space
Hp(Rn).

Multipliers for Lebesgue or Hardy spaces have also been studied extensively in the
context of Lie groups. For spectral multipliers on Lie groups associated to one (or
several) opeartors such as a sub-Laplacian, see, for example, [22, 5, 27, 17, 1, 25, 26]
and the references therein. Note that the optimality of a Mihlin-Hörmander condition in
terms of the topological or homogeneous dimensions for spectral multipliers on stratified
groups is a very difficult problem which has so far only been solved in the case of 2-step
[26, 17, 28, 25]. Concerning Fourier multipliers on Lie groups, to our best knowledge,
the first work was done by Coifman and Weiss in [6], where they studied the Fourier
multipliers of SU(2), see also [7]. After that, investigations of Fourier multipliers on
compact Lie groups has been focused on the central multipliers [32, 33, 34], untill the
appearance of the recent works of the third-named author and Wirth [30, 31] and Fischer
[12]. The rest of the literature concerning Fourier multipliers on Lie groups is restricted
to the motion group [29] and to the Heisenberg group [8, 24, 2].

Recently, Fischer and the third-named author [13] investigated Fourier multipliers
on graded Lie groups. One of their main results is the following Mihlin-type Fourier
multiplier theorem for Lp spaces on graded Lie groups. (Basic concepts concerning
graded Lie groups and representation theory, and the definition of difference operators
will be recalled in Section 2.)

Theorem A (see [13, Theorem 1.1]). Let G be a graded Lie group with homogeneous

dimension Q. Let σ = {σ(π), π ∈ Ĝ} be a measurable field of operators in L∞(Ĝ).
Assume that there exist a positive Rockland operator R (of homogeneous degree ν) and
an integer N > Q/2 divisible by the dilation weights v1, · · · , vn (see Section 2 for their
definition) such that

sup
π∈Ĝ

∥∥∆ασ π(R)
[α]
ν

∥∥
L (Hπ)

<∞ (1.3)

and
sup
π∈Ĝ

∥∥π(R)
[α]
ν ∆ασ

∥∥
L (Hπ)

<∞, (1.4)

hold for all α ∈ Nn
0 with [α] ≤ N . Then the Fourier multiplier operator Tσ defined via

FG(Tσf)(π) = σ(π)f̂(π) (1.5)
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is of weak type (1, 1), and is bounded on Lp(G) for all 1 < p <∞.

Examining the proof of Theorem A (given in [13]), we find that the condition (1.3)
is sufficient to give the weak (1, 1) estimate of Tσ. The latter along with the L2(G)-
boundedness of Tσ (which follows from the Plancherel theorem) and an interpolation
argument yields the Lp(G)-boundedness of Tσ for 1 < p ≤ 2. Note that T ∗σ = Tσ∗ ,

where σ∗ = {σ(π)∗, π ∈ Ĝ}, and that if σ satisfies (1.4) then σ∗ satisfies (1.3). Hence,
if σ satisfies (1.3) and (1.4), then both Tσ and T ∗σ are bounded on Lp(G) for 1 < p ≤ 2,
which implies that Tσ is bounded on Lp(G) for all 1 < p <∞.

The purpose of the present paper is to extend Theorem A to the case 0 < p ≤ 1 by
investigating the Hp(G)→ Lp(G) boundedness of Tσ, where Hp(G) is the Hardy space
on G. Our main results is the following

Theorem 1.1. Let G be a graded Lie group with homogeneous dimension Q. Let

σ = {σ(π), π ∈ Ĝ} be a measurable field of operators in L∞(Ĝ). Let 0 < p ≤ 1.
Assume that there exist a positive Rockland operator R (of homogeneous degree ν) and
an integer N > Q(1/p− 1/2) divisible by the dilation weights v1, · · · , vn such that

sup
π∈Ĝ

∥∥∆ασ π(R)
[α]
ν

∥∥
L (Hπ)

<∞

holds for all α ∈ Nn
0 with [α] ≤ N , Then the Fourier multiplier operator Tσ defined by

(1.5) is bounded from Hp(G) to Lp(G).

Some remarks concerning Theorem 1.1 are in order.

(1) Taking p = 1 in Theorem 1.1, we have the H1(G)→ L1(G) boundedness of Tσ,
under the assumption that σ satisfies (1.3) for some integer N > Q/2 which is
divisible by the dilation weights v1, · · · , vn. Thus (by interpolation) our result
also implies the Lp(G)-boundedness of Tσ stated in Theorem A under the same
assumptions.

(2) In the abelian Euclidean setting, that is, (Rn,+) with the usual isotropic dilation
with R being the Laplace operator, (1.3) is equivalent to (1.4), and each of them
reduces to (1.1). Indeed, the Euclidean abelian setting, all the dilations weights
v1, · · · , vn are equal to 1, and π(R) reduces to |ξ|2, where ξ is the (Fourier) dual
variable.

(3) As we mentioned before, the optimality of the Mihlin-Hörmander condition for
multipliers on Lie groups is a very deep problem. It is known that on any 2-step
stratified group the sufficient and necessary condition for Lp-boundedness of a
spectral multiplier F (L) (where L is a sub-Laplaican) is that F satisfies a scale-
invariant smoothness condition of order s > n/2, where n is the topological
dimension of the group (see [26]). It is natural to ask whether the condition
N > Q(1/p − 1/2) in Theorem 1.1 can be replaced by N > n(1/p − 1/2).
However, we do not indent to study this problem in the present paper.

To prove Theorem 1.1 we shall mainly use an atomic decomposition of Hp(G), the
Littlewood–Paley decomposition, and a Taylor formula with integral remainder on ho-
mogeneous groups which is due to Bonfiglioli [3]. Hulanicki’s theorem will also play an
important role in our proof.

This paper is organized as follows. In Section 2, we recall basic notions concerning
graded Lie groups, basic representation theory, the group Fourier transform, Rockland



4 QING HONG, GUORONG HU, AND MICHAEL RUZHANSKY

operators and difference operators. In Section 3, we recall some basic facts about Hardy
spaces on graded Lie groups, including their atomic decomposition. The proof of our
main theorem will be given in Section 4.

Notation. We use N0 to denote the set of all nonnegative integers. For a nonnegative
number s, we denote by bsc the largest integer less than or equal to s. If H1 and H2 are
two Hilbert spaces, we denote by L (H1,H2) the Banach space of the bounded linear
operators from H1 to H2. When H1 = H2 = H then we write L (H1,H2) = L (H).
The letter C will denote positive constants, which are independent of the main variables
involved and whose value may vary at every occurrence. By writing f . g we mean
that f ≤ Cg. If f . g and g . f , we also write f ∼ g.

2. Preliminaries

2.1. Graded Lie groups and their homogeneous structure. A Lie group G is
said to be graded if it is connected and simply connected, and its Lie algebra g is
endowed with a vector space decomposition g = ⊕∞k=1gk (where all but finitely many of
the gk’s are {0}) such that [gk, gk′ ] ⊂ gk+k′ for all k, k′ ∈ N. Such a group is necessarily
nilpotent, and the exponential map exp : g → G is a diffeomorphism. Examples of
graded Lie groups include the Euclidean space Rn, the Heisenberg group Hn and, more
generally, all stratified Lie groups.

We choose and fix a basis {X1, · · · , Xn} of g, so that it is adapted to the gradation,
i.e., {X1, · · · , Xn1} (possibly ∅) is a basis of g1, {Xn1+1, · · · , Xn1+n2} (possibly ∅) is a
basis of g2, and so on. Via the map

Rn 3 (x1, · · · , xn) 7→ exp(x1X1 + · · ·+ xnXn) ≡ x ∈ G, (2.1)

each point (x1, · · · , xn) ∈ Rn is identified with the point x ∈ G. This map takes the
Lebesgue measure on Rn to a bi-invariant Haar measure µ on G. We denote the group
identity of G by e.

The Lie algebra g is equipped with a natural family of dilations {δr}r>0 which are
linear mappings from g to g determined by

δrX = rkX for X ∈ gk

For each j ∈ {1, · · · , n}, let vj be the unique positive integer such that Xj ∈ gvj . Then
we have δrXj = rvjXj, j = 1, · · · , n. The associated group dilation is given by

δrx = (rv1x1, · · · , rvnxn),

for x = (x1, · · · , xn) ∈ G and r > 0. The integers v1, · · · , vn are referred to as weights
of the dilations {δt}t>0, and the positive integer

Q :=
∞∑
k=1

k(dim gk) =
n∑
j=1

vj

is called the homogeneous dimension of G.
A homogeneous quasi-norm on G is a continuous function x→ |x| from G to [0,∞)

which vanishes only at e and satisfies that |x−1| = |x| and |δrx| = r|x| for all x ∈ G
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and r > 0. An example of homogeneous quasi-norm on G is given by

|x|κ =

(
n∑
j=1

x
2κ/vj
j

)1/(2κ)

, (2.2)

where κ is the smallest common multiple to the weights v1, · · · , vn. Any two homo-
geneous quasi-norms on G are equivalent (see [16]). Henceforth we fix a homogenous
quasi-norm | · | on G. It satisfies a quasi-triangle inequality: there exists a constant
γ ≥ 1 such that

|xy| ≤ γ(|x|+ |y|) (2.3)

for all x, y ∈ G.
There is an analogue of polar coordinates on homogeneous groups with the homoge-

neous dimension Q replacing the topological dimension n, see [16]:

∀f ∈ L1(G)

∫
G

f(x)dµ(x) =

∫ ∞
0

∫
S

f(δry)rQ−1dσ(y)dr,

where dσ is a (unique) positive Borel measure on the unit sphere S := {x ∈ G : |x| = 1}.
This implies that for 0 < r < R <∞ and θ ∈ R,∫

r≤|x|≤R
|x|θ−Qdµ(x) =

{
Cθ−1(Rθ − rθ) if θ 6= 0,

C log(R/r) if θ = 0.
(2.4)

Consequently, if θ > 0 then | · |θ−Q is integrable near the group identity e, and if θ < 0
then | · |θ−Q is integrable near ∞.

Since G has been identified with Rn via the map given in (2.1), functions on G can
be viewed as functions on Rn, and vise versa. This leads naturally to the notions of test
function classes D(G), S(G) and the distribution spaces D′(G), S ′(G). For example, a
function f is said to be in the Schwartz class S(G) if f ◦ exp is a Schwartz function on
Rn. The coordinate function G 3 x = (x1, · · · , xn) 7→ x1 ∈ R is denoted by x1. For
a multi-index α = (α1, · · · , αn) ∈ Nn

0 , we define xα = xα1
1 · · · xαnn , as a function on G.

Similarly, we set Xα = Xα1
1 · · ·Xαn

n in the universal enveloping Lie algebra U(g) of g.
We shall follow the usual custom of identifying each vector of g with a left-invariant
vector field on G and, more generally, we identify the universal enveloping Lie algebra
of g with the left-invariant differential operators. In what follows we keep the same
notation for the vectors and the corresponding operators. By the Poincaré-Birkhoff-
Witt theorem, the Xα’s form a basis for the algebra of the left-invariant differential
operators on G.

In a canonical way the dilations {δr}r>0 lead to the notions of homogeneity for func-
tions and operators. For instance the degree of homogeneity of the function xα and the
differential operator Xα is

[α] :=
n∑
j=1

vjαj.

A function P : G→ C is called a polynomial, if it is of the form

P (x) =
∑
α∈Nn0

cαx
α
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where all but finitely many of the complex coefficients cα vanish. The homogeneous
degree of the polynomial P is defined as max{[α] : cα 6= 0}. For M ∈ N0, we set

PM := {all polynomials on G with homogeneous degree ≤M}.̂

We denote by X̃1, · · · , X̃n the corresponding basis for right-invariant vector fields,
that is,

X̃jf(x) =
d

dt
f
(

exp(tXj)x
)∣∣
t=0
, j = 1, · · · , n.

Also, for α ∈ Nn
0 , we set X̃α = X̃α1

1 · · · X̃αn
n .

If f and g are measurable functions on G, then their convulution is defined by

f ∗ g(x) =

∫
G

f(y)g(y−1x)dµ(y) =

∫
G

f(xy−1)g(y)dµ(y),

provided that the integrals converge. For any multi-index α ∈ Nn
0 and sufficiently good

functions f and g, we have (see [16, Chapter 1])

Xα(f ∗ g) = f ∗ (Xαg), X̃α(f ∗ g) = (X̃αf) ∗ g, (Xαf) ∗ g = f ∗ (X̃αg). (2.5)

2.2. Fourier analysis on graded Lie groups. The general theory of representation
of Lie groups may be found in [9]. Here we also refer to [14] for a description which is
more adapted to our particular context.

A representation π of a Lie group G on a Hilbert space Hπ 6= {0} is a homomorphism
from G into the group of bounded linear operators on Hπ with bounded inverse. More
precisely,

• for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is bounded and has
bounded inverse;
• for every x, y ∈ G, we have π(xy) = π(x)π(y).

A representation π of G is called irreducible if it has no closed invariant subspaces.
π is called unitary if π(x) is unitary for every x ∈ G, and is called strongly continuous
if the mapping π : G → L (Hπ) is continuous with respect to the strong operator
topology in L (Hπ). Two representations π1 and π2 are said to be equivalent if there
exists a bounded linear mapping A : Hπ1 → Hπ2 between their representation spaces
with a bounded inverse such that the relation Aπ1(x) = π2(x)A holds for all x ∈ G. In
this case we write π1 ∼ π2, and denote their equivalence class by [π1] = [π2]. The set of
all equivalence classes of strongly continuous irreducible unitary representations of G is

called the unitary dual of G and is denoted by Ĝ. In what follows, we will identify one
representation π with its equivalent class [π].

For a unitary representation of G, the corresponding infinitesimal representation
which acts on the universal enveloping algebra U(g) of the Lie algebra g is still denoted
by π. This is characterized by its action on g:

π(X) = ∂t=0π(etX), X ∈ g.

The infinitesimal action acts on the space H∞π of smooth vectors, that is, the space of
vectors v ∈ Hπ such that the function G 3 x 7→ π(x)v ∈ Hπ is of class C∞.
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The Fourier coefficients or group Fourier transform of a function f ∈ L1(G) at π ∈ Ĝ
is defined by

FGf(π) ≡ f̂(π) ≡ π(f) :=

∫
G

f(x)π(x)∗dµ(x).

It is readily seen that

‖f̂(π)‖L (Hπ) ≤ ‖f‖L1(G).

For f, g ∈ L1(G), we also have

f̂ ∗ g(π) = ĝ(π)f̂(π).

There exists a unique positive Borel measure µ̂ on Ĝ, called the Plancherel measure,
such that for any continuous function f on G with compact support, one has∫

G

|f(x)|2dµ(x) =

∫
Ĝ

‖FGf(π)‖2
HS(Hπ)dµ̂(π),

where ‖ · ‖HS(Hπ) denotes the Hilbert-Schmidt norm on the space HS(Hπ) ∼ Hπ ⊗H∗π
of Hilbert-Schmidt operators on the Hilbert space Hπ. Since L1(G)∩L2(G) is dense in

L2(G), the Fourier transform FG extends to a unitary operator from L2(G) onto L2(Ĝ).
By the general theory on locally compact unimodular groups of type I (see e.g. [9]),

if T is an L2-bounded operator on G which commutes with left-translations, then there

exists a field of bounded operators T̂ (π) such that for all f ∈ L2(G),

FG(Tf)(π) = T̂ (π)f̂(π) a.e. π ∈ Ĝ.
Moreover, we have

‖T‖L (L2(G)) = sup
π∈Ĝ
‖T̂ (π)‖L (Hπ),

where the supremum here is understood as the essential supremum with respect to the

Plancherel measure µ. Conversely, given any σ = {σ(π), π ∈ Ĝ} ∈ L∞(Ĝ), there is a
corresponding operator Tσ given by

FG(Tσf)(π) = σ(π)f̂(π), f ∈ L2(G).

By the Plancherel theorem, Tσ is bounded on L2(G) with ‖Tσ‖L (L2(G)) = ‖σ‖L∞(Ĝ).
If π is a unitary irreducible representation of G and r > 0, we define r · π to be the

unitary irreducible representation such that

r · π(x) = π(δrx), x ∈ G.

2.3. Rockland operators. Let G be a graded Lie group. A left-invariant differential
operator R on G is called a Rockland operator if it is homogeneous of positive degree
and for each unitary irreducible non-trivial representation π of G, the operator π(R)
is injective on H∞π . Rockland operators may be defined on any homogeneous group,
however it turns out that the existence of a Rockland operator on a homogeneous group
implies that (the Lie algebra of) the group admits a gradation. This is the reason why
we and the authors in [13] consider the setting of graded Lie groups. On any graded
Lie group G, the operator

n∑
j=1

(−1)
ν0
vj cjX

2
ν0
vj

j



8 QING HONG, GUORONG HU, AND MICHAEL RUZHANSKY

with cj > 0 is a Rockland operator of homogeneous degree 2ν0 if ν0 is any common
multiple of v1, · · · , vn.

We will mainly consider positive Rockland operators. A Rockland operator R is said
to be positive, if ∫

G

Rf(x)f(x)dµ(x) ≥ 0

for all f ∈ S(G). If a Rockland operator R is positive then R and π(R) admit self-
adjoint extensions on L2(G) and Hπ, respectively. We use the same notation for their
self-adjoint extensions. By the spectral theory, we have

R =

∫ ∞
0

λdER(λ) and π(R) =

∫ ∞
0

λdEπ(R)(λ),

where ER(λ) (resp. Eπ(R)(λ)) is the resolution of the identity associated to R (resp.
π(R)).

For any bounded Borel function ϕ on [0,∞), the operator

ϕ(R) =

∫ ∞
0

ϕ(λ)dER(λ)

is bounded on L2(G), and commutes with left translations. Thus, by the Schwartz
kernel theorem, there exists a distribution Kϕ(R) ∈ S ′(G) such that

ϕ(R)f = f ∗Kϕ(R), ∀f ∈ S(G).

Note that the point λ = 0 may be neglected in the spectral resolution, since the pro-
jection measure of {0} is zero (see [21] or [14, Remark 4.2.8]). Consequently we should
regard ϕ as a function on (0,∞) rather than on [0,∞).

We now recall Hulanicki’s theorem, which will play an important role in the proof of
our main result.

Theorem 2.1 (Hulanicki [20]). Let G be a graded Lie groups and let R be a positive
Rockland operator on G. For any M1 ∈ N and M2 ≥ 0, there exist C = C(M1,M2) > 0
and k = k(M1,M2), k′ = k′(M1,M2) ∈ N0 such that, for any ϕ ∈ Ck(0,∞), the
convolution kernel Kϕ(R) of ϕ(R) satisfies∑

[α]≤M1

∫
G

|XαKϕ(R)(x)|(1 + |x|κ)M2dµ(x) ≤ C sup
λ∈(0,∞)

`∈{0,1,··· ,k}
`′∈{0,1,··· ,k′}

(1 + λ)`
′
∣∣∣∣ d`dλ`ϕ(λ)

∣∣∣∣ .
The same result with the right-invariant vector fields X̃j’s instead of the left-invariant

vector fields Xj’s also holds.

Corollary 2.2. Let R be a positive Rockland operator on a stratified Lie group G. If ϕ
is a function on (0,∞) such that ϕ = ϕ̃|(0,∞) for some ϕ̃ ∈ S(R), then Kϕ(R) ∈ S(G).

2.4. Difference operators. The Mihlin condition (1.1) is formulated in terms of the

derivatives with respect to the Fourier variable ξ. However, for a field σ = {σ(π), π ∈ Ĝ}
of operators, there is no direct way to define an analogue of derivatives with respect to
the Fourier variable π. To generalize the symbolic conditions to the setting of graded
Lie groups, Fischer and Ruzhansky [14] introduced the so-called difference operators,
whose definition we now recall.
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For a, b ∈ R, we denote by LL(L2
a(G), L2

b(G)) the subspace of all T ∈ L (L2
a(G), L2

b(G))
which are left-invariant. Here L2

a(G) is the Bessel potential space (fractional Sobolev
space) defined in [15]. Define

Ka,b(G) :=
{
K ∈ S ′(G) : the operator S(G) 3 f 7→ f ∗K extends to

a bounded operator from L2
a(G) to L2

b(G))
}

and define L∞a,b(Ĝ) to be the space of all fields σ = {σ(π), π ∈ Ĝ} such that

‖σ‖L∞a,b(Ĝ) := sup
π∈Ĝ
‖π(I +R)

b
ν σ(π)π(I +R)−

a
ν ‖L (Hπ) <∞.

From [14, Proposition 5.1.24] we see that, if σ ∈ L∞a,b(Ĝ) then the Fourier multiplier

operator Tσ corresponding to σ belongs to LL(L2
a(G), L2

b(G)) with

‖Tσ‖L (L2
a(G),L2

b(G)) = ‖σ‖L∞a,b(Ĝ).

Conversely, if T ∈ LL(L2
a(G), L2

b(G)), then there exists a unique σ ∈ L∞a,b(Ĝ) such that

FG(Tf)(π) = σ(π)f̂(π), f ∈ L2(G).

In this case, denoting by K ∈ Ka,b(G) the convolution kernel of T , we define

FGK = σ and F−1
G σ = K.

This extends the definition of Fourier transform to the space Ka,b(G). See [14, Definition
5.1.25].

For α ∈ Nn
0 and σ = {σ(π), π ∈ Ĝ} ∈ L∞a,b(Ĝ), the difference operator ∆α acting on

σ is defined according to the formula (see [14, Definition 5.2.1])

∆ασ(π) = FG(qαF−1
G σ)(π) for a.e. π ∈ Ĝ,

where qα(x) = xα. Analogously to the derivatives in the Euclidean setting, the operator
∆α satisfies the Lebnitz rule [14, Section 5.2.2]:

∆α(στ) =
∑

α1+α2=α

Cα1,α2∆
α1(σ)∆α2(τ), σ, τ ∈ L∞a,b(Ĝ). (2.6)

3. Hardy spaces on graded Lie groups

A comprehensive theory of Hardy spaces on general homogeneous groups was built
by Folland and Stein [16]. Since all graded Lie groups are homogeneous, the theory in
[16] applies to our setting.

In what follows, G is always a graded Lie group with homogeneous dimension Q.

3.1. Definition of Hardy spaces on G. We first introduce some maximal functions.
Given a function Φ ∈ S(G), we defined the nontangential maximal function MΦf and
the radial maximal function M0

Φf of f ∈ S ′(G) by

MΦf(x) := sup
|x−1y|<t

|f ∗ Φt(y)| and M0
Φf(x) := sup

t>0
|f ∗ Φt(x)|,
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respectively, where Φt(x) := t−QΦ(δt−1x). We then define the grand maximal function
M(N)f for each N ∈ N by

M(N)f(x) := sup
Φ∈S(G),‖Φ‖(N)≤1

MΦf(x),

where

‖Φ‖(N) := sup
|α|≤N,x∈G

(1 + |x|κ)(N+1)(Q+1)|X̃αΦ(x)|.

Moreover, given N ∈ N, we define the grand maximal function M(N)f of f ∈ S ′(G) by

Definition 3.1. For 0 < p <∞, the Hardy space Hp(G) is defined as

Hp(G) :=
{
f ∈ S ′(G) : M(Np)f <∞

}
,

where
Np := min{[α] : α ∈ Nn

0 with [α] > Q(1/p− 1)}.
The quasi-norm on Hp(G) is defined by

‖f‖Hp(G) := ‖M(Np)f‖Lp(G).

The Hardy spaces Hp(G), initially defined via grand maximal function, can be char-
acterized by radial maximal function and nontangential maximal function equivalently.
To recall these maximal characterizations, we need the notion of commutative approx-
imate identities introduced in [16]. A commutative approximate identity on G is a
function Φ ∈ S(G) such that

∫
G

Φ(x)dx = 1 and Φs ∗Φt = Φt ∗Φs for all s, t > 0. On a
graded Lie group it is easy to construct a commutative approximate identity. Indeed,
if R is a positive Rockland operator on G, and ϕ ∈ S(R) such that ϕ(0) = 1, then the
convolution kernel of the operator ϕ(R) is a commutative approximate identity.

Proposition 3.2. ([16, Corollary 4.17]) Suppose 0 < p < ∞ and Φ is a commutative
approximate identity. Then for f ∈ S ′(G), the following are equivalent:

(i) M0
Φf ∈ Lp(G);

(ii) MΦf ∈ Lp(G);
(iii) M(Np)f ∈ Lp(G).

Moreover, we have

‖M0
Φf‖Lp(G) ∼ ‖MΦf‖Lp(G) ∼ ‖M(Np)f‖Lp(G)

with the implicit constants depending only on Φ and p.

Remark 3.3. If 1 < p < ∞, the spaces Hp(G) and Lp(G) coincide with equivalent
norms. See [16, p. 75].

3.2. Atomic decomposition. Atomic decomposition is a very useful tool for the study
of boundedness of operators on Hardy spaces. Analogously to the Euclidean case, Hardy
spaces on graded Lie groups also admit an atomic decomposition, which we now recall.
See [16] for more details.

A triplet (p, q,M) is said to be admissible, if 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q and M ∈ N0

with M ≥ max
{

[α] : α ∈ Nn
0 with [α] ≤ Q(1/p− 1)

}
.

Definition 3.4. Given an admissible triplet (p, q,M), we say that a function a on G
is a (p, q,M)-atom, if it is a compactly supported Lq function such that
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(i) there is a ball B such that supp a ⊂ B and ‖a‖Lq ≤ µ(B)1/q−1/p;
(ii) for every P ∈ PM ,

∫
G
a(x)P (x)dµ(x) = 0.

The atomic decomposition of Hp(G) can be stated as follows.

Proposition 3.5 ([16]). Let (p, q,M) be an admissible triplet. Then there is a constant
c1 > 0 such that for all any (p, q,M)-atom a, one has

‖a‖Hp(G) ≤ c1.

Conversely, given any f ∈ Hp(G), there exist a sequence {aj}∞j=1 of (p, q,M)-atoms
and a sequence {λj}∞j=1 of complex numbers such that f =

∑∞
j=1 λjaj with convergence

in S ′(G) and (
∞∑
j=1

|λj|p
)1/p

≤ c2‖f‖Hp(G),

where c2 is a constant independent of f .

4. Proof of main result

We need the following Taylor’s formula with integral remainder on homogeneous
groups, due to Bonfiglioli (see [3, Theorem 2]). Note that in [3] it is assumed that
v1 = 1, in which case one has dMc = M .

Lemma 4.1. Suppose f ∈ CM+1(G) for some M ∈ N0. Let y 7→ P f
x,M(y) denote the

right Taylor polynomial of f at x of homogeneous degree M . Then there exists a positive
group constant CM such that

f(yx)− P f
x,M(y) =

∑
|α|≤dMc
[α]≥M+1

X̃αf(x)

 ∑
β:[β]=[α]

Cα,βy
β



+
∑

|α|≤dMc+1
[α]≥M+1

 ∑
β:[β]=[α]

C ′α,βy
β

∫ 1

0

(X̃αf)(y(t)x)
(1− t)M

M !
dt,

where

y(t) := exp

(
n∑
j=1

tyjXj

)
≡ (ty1, · · · , tyn),

dMc := max{|α| : α ∈ Nn
0 with [α] ≤M}, and Cα,β, C ′α,β are constants.

Lemma 4.2. Suppose that σ = {σ(π), π ∈ Ĝ} is a measurable field of operators, R is
positive Rockland operator (of homogeneous degree ν), and N is an integer, all of which
satisfy the hypothesis of Theorem 1.1. Let ϕ ∈ S(R) such that suppϕ ⊂ [2−ν , 2ν ] and∑

j∈Z

ϕ(2−νjλ) = 1 ∀λ ∈ (0,∞).
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Let σj(π) := σ(2j · π)ϕ(π(R)) and Kj := F−1
G σj for j ∈ Z. Then for any α ∈ Nn

0 , there
exits a constant C (depending on α) such that∫

G

(1 + |x|)2N |X̃αKj(x)|2dµ(x) ≤ C. (4.1)

Proof. Let ψ ∈ S(R) such that ψ = 1 on [2−ν , 2ν ]. Then ϕ(λ) = ϕ(λ)ψ(λ) for all λ ∈ R.
Consequently

σj(π) = σj(π)ψ(π(R)).

Letting Ψ be the convolution kernel of ψ(R), it follows that

X̃αKj(x) = X̃α
(
Ψ ∗Kj

)
(x) = (X̃αΨ) ∗Kj(x),

where we used (2.5). From the quasi-triangle inequality (2.3) we have

(1 + |x|)N . (1 + |xy−1|)N(1 + |y|)N ,

which yields

(1 + |x|)N
∣∣(X̃αΨ) ∗Kj(x)

∣∣ . [(1 + | · |)N |X̃αΨ|
]
∗
[
(1 + | · |)N |Kj|

]
(x)

By Hulanicki’s theorem (see Corollary 2.2), we have Ψ ∈ S(G), which implies

(1 + | · |)N |X̃αΨ| ∈ L1(G).

Hence by Young’s inequality,∫
G

(1 + |x|)2N |X̃αKj(x)|2dµ(x)

.
∥∥∥[(1 + | · |)N |X̃αΨ|

]
∗
[
(1 + | · |)N |Kj|

]∥∥∥2

L2(G)

.
∫
G

(1 + |x|)2N |Kj(x)|2dµ(y)

∼
∫
G

(1 + |x|2κκ )N/κ|Kj(x)|2dµ(y),

(4.2)

where | · |κ is the homogeneous quasi-norm defined by (2.2).
Since N is a common multiple of the dilation weights v1, · · · , vn and κ is the smallest

such common multiple, (1 + |x|2κκ )N/κ of the form

(1 + |x|2κκ )N/κ =
∑

[β]≤N

cβ(xβ)2.

Inserting this into (4.2), and using the Plancherel theorem and the Lebniz rule (2.6),
we have ∫

G

(1 + |x|)2N |X̃αKj(x)|2dµ(x)

.
∑

[β]≤N

∥∥∆β
[
σj(π)ϕ(π(R))

]∥∥
L2(Ĝ)

.
∑

[β′]+[β′′]≤N

∥∥∥(∆β′σj)(π)∆β′′
[
ϕ(π(R))

]∥∥∥
L2(Ĝ)

.

(4.3)
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Inserting the powers π(R)[β′]/ν , each term in the above sum can be estimated as follows:∥∥∥(∆β′σj)(π)∆β′′
[
ϕ(π(R))

]∥∥∥
L2(Ĝ)

≤
∥∥∥(∆β′σj)(π)π(R)[β′]/ν

∥∥∥
L∞(Ĝ)

∥∥∥π(R)−[β′]/ν∆β′′
[
ϕ(π(R))

]∥∥∥
L2(Ĝ)

=: E1 · E2.

(4.4)

For the factor E1, we have

E1 = sup
π∈Ĝ

∥∥∥(∆β′σj)(π)π(R)[β′]/ν
∥∥∥

L (Hπ)

= sup
π∈Ĝ

∥∥∥2j[β
′](∆β′σ

)
(2j · π)π(R)[β′]/ν

∥∥∥
L (Hπ)

= sup
π∈Ĝ

∥∥∥(∆β′σ
)
(2j · π)

[
(2j · π)(R)

][β′]/ν∥∥∥
L (Hπ)

= sup
π∈Ĝ

∥∥∥(∆β′σ
)
(π)
[
π(R)

][β′]/ν∥∥∥
L (Hπ)

≤ Cβ′ ,

(4.5)

where the last inequality follows from the Mihlin-type condition (1.3).
Using Hulanicki’s theorem (2.2) and the fact that ϕ vanishes near the origin, one can

show that (see the proof of Proposition 4.9 in [13] for details)

E2 =
∥∥∥π(R)−[β′]/ν∆β′′

[
ϕ(π(R))

]∥∥∥
L2(Ĝ)

≤ Cβ′,β′′ . (4.6)

Combining (4.3) through (4.6) yields the desired estimate (4.1). �

Now we give the proof of our main result.

Proof of Theorem 1.1. Let 0 < p ≤ 1 and let σ, R and N satisfy the hypothesis of
Theorem 1.1. We fix an integer M such that

M ≥ max
{

[α] : α ∈ Nn
0 with [α] ≤ Q(1/p− 1)

}
(4.7)

and

Q

2
+ (M + 1)−N > 0. (4.8)

The condition (4.7) means that (p, 2,M) is an admissible triplet. Hence, to prove that
Tσ is bounded from Hp(G) to Lp(G), by Proposition 3.5 it suffices to show that there
exists a constant C such that for an arbitrary (p, 2,M)-atom a,

‖Tσa‖Lp(G) . 1. (4.9)

Suppose a is a (p, 2,M)-atom associated to a ball B = B(x0, r). Since Tσ commutes
with left translations, we may assume without loss of generality that x0 = e, i.e., the
ball B is centered at the group identity e. Let c be a sufficient large positive constant.
We write

‖Tσa‖pLp(G) =

∫
B(e,cr)

|Tσa(x)|pdµ(x) +

∫
B(e,cr)c

|Tσa(x)|pdµ(x)

=: I1 + I2.
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First we estimate I1. Indeed, by the Plancherel theorem and Hölder’s inequality,

I1 . ‖Tσa‖pL2(G)|B(e, cr)|1−
p
2 . ‖σ‖p

L∞(Ĝ)
‖a‖pL2(G)|B(e, cr)|1−

p
2 . 1. (4.10)

Next we estimate I2. Choose a function ϕ ∈ S(R) such that suppϕ ⊂ [2−ν , 2ν ] and∑
j∈Z

ϕ(2−νjλ) = 1 ∀λ ∈ (0,∞).

By the spectral theorem (recalling that 0 can be neglected in the spectral resolution),

a =
∑
j∈Z

ϕ(2−νjR)a in L2(G).

Consequently (using the L2-boundedness of Tσ) we have

Tσa(x) =
∑
j∈Z

Tσϕ(2−νjR)a(x), a.e. x ∈ G. (4.11)

We set

σj(π) := σ(2j · π)ϕ(π(R)),

σ̃j(π) := σj(2
−j · π) = σ(π)ϕ(2−j · π(R)),

Kj := F−1
G σj,

K̃j := F−1
G σ̃j.

Then (4.11) can be rewritten as

Tσa(x) =
∑
j∈Z

Tσ̃ja(x) =
∑
j∈Z

∫
B(e,r)

K̃j(y
−1x)a(y)dµ(y) =

∑
j∈Z

Fj(x),

where

Fj(x) :=

∫
B(e,r)

K̃j(y
−1x)a(y)dµ(y).

Using (
∑

j uj)
p ≤

∑
j |uj|p (0 < p ≤ 1) and Hölder’s inequality, it follows that∫

B(e,cr)c
|Tσa(x)|pdµ(x) =

∫
B(e,cr)c

∣∣∣∣∣∑
j∈Z

Fj(x)

∣∣∣∣∣
p

dµ(x)

≤
∑
j∈Z

∫
B(e,cr)c

|Fj(x)|p dµ(x)

=
∑
j∈Z

∫
B(e,cr)c

|x|−pN |x|pN |Fj(x)|p dµ(x)

≤
∑
j∈Z

(∫
B(e,cr)c

|x|−
2pN
2−p dµ(x)

)1− p
2
(∫

B(e,cr)c
|x|2N |Fj(x)|2dµ(x)

) p
2

∼
∑
j∈Z

r
(2−p)Q

2
−pN

(∫
B(e,cr)c

|x|2N |Fj(x)|2dµ(x)

) p
2

.

(4.12)

Here we also used the assumption that N > Q(1/p− 1/2), which implies 2pN
2−p > Q and

hence the function | · |
2pN
2−N is integrable on B(e, cr)c.
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Let j0 be the unique integer such that 2−j0 ≤ r < 2−j0+1 (i.e., r ∼ 2−j0). To estimate
the last integral in (4.12), we shall consider two cases: j ≥ j0 and j < j0.

Case 1: j ≥ j0. Observe that |x| ∼ |y−1x| whenever x ∈ B(e, cr)c and y ∈ B(e, r).
Hence for all x ∈ B(e, cr)c,

|x|N |Fj(x)| = |x|N
∣∣∣∣∫
B(e,r)

K̃j(y
−1x)a(y)dµ(y)

∣∣∣∣
∼
∫
B(e,r)

|y−1x|NK̃j(y
−1x)||a(y)|dµ(y)

≤ ‖a‖L2(G)

(∫
B(e,r)

|y−1x|2N |K̃j(y
−1x)|2dµ(y)

) 1
2

. |B(e, r)|
1
2
− 1
p

(∫
B(e,r)

|y−1x|2N |K̃j(y
−1x)|2dµ(y)

) 1
2

.

It follows by Fubini’s theorem, the fact that K̃j(x) = 2jQKj(δ2jx), and Lemma 4.2 that

∫
B(e,cr)c

|x|2N |Fj(x)|2dµ(x)

. |B(e, r)|1−
2
p

∫
B(e,cr)c

(∫
B(e,r)

|y−1x|2N |K̃j(y
−1x)|2dµ(y)

)
dµ(x)

= |B(e, r)|1−
2
p

∫
B(e,r)

(∫
B(e,cr)c

|y−1x|2N |K̃j(y
−1x)|2dµ(x)

)
dµ(y)

≤ |B(e, r)|1−
2
p

∫
B(e,r)

(∫
G

|y−1x|2N |K̃j(y
−1x)|2dµ(x)

)
dµ(y)

= |B(e, r)|1−
2
p

∫
B(e,r)

(∫
G

|x|2N |K̃j(x)|2dµ(x)

)
dµ(y)

= |B(e, r)|2−
2
p

∫
G

|x|2N |K̃j(x)|2dµ(x)

= |B(e, r)|2−
2
p2j(Q−2N)

∫
G

|x|2N |Kj(x)|2dµ(x)

. r(2− 2
p

)Q2j(Q−2N).

(4.13)

Case 2: j < j0. Let P
K̃j
x,M be the right Taylor polynomial of K̃j at x of homogeneous

degree M . By the vanishing moments of a, we have, for each x ∈ B(e, cr)c,

Fj(x) =

∫
B(e,r)

[
K̃j(y

−1x)− P K̃j
x,M(y−1)

]
a(y)dµ(y) (4.14)
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Using Lemma 4.1 we can write

K̃j(y
−1x)− P K̃j

x,M(y−1) =
∑
|α|≤dMc
[α]≥M+1

X̃αK̃j(x)Pα(y)

+
∑

|α|≤dMc+1
[α]≥M+1

P ′α(y)

∫ 1

0

(X̃αK̃j)
(
(y−1)(t)x

)(1− t)M

M !
dt,

(4.15)

where both Pα and P ′α are polynomials on G of homogeneous degree [α], and

(y−1)(t) := exp

(
−

n∑
j=1

yjXj

)
≡ (−ty1, · · · ,−tyn).

Inserting (4.15) into (4.14), and using the Cauchy-Schwarz inequality and the size con-
dition of atoms, we have

|Fj(x)| ≤
∑
|α|≤dMc
[α]≥M+1

∫
B(e,r)

∣∣∣X̃αK̃j(x)Pα(y)a(y)
∣∣∣ dµ(y)

+
∑

|α|≤dMc+1
[α]≥M+1

∫
B(e,r)

∣∣∣∣P ′α(y)

∫ 1

0

(X̃αK̃j)
(
(y−1)(t)x

)(1− t)M

M !
dt

∣∣∣∣ |a(y)|dµ(y)

.
∑
|α|≤dMc
[α]≥M+1

r( 1
2
− 1
p

)Q

(∫
B(e,r)

∣∣∣X̃αK̃j(x)Pα(y)
∣∣∣2 dµ(y)

)1/2

+
∑

|α|≤dMc+1
[α]≥M+1

r( 1
2
− 1
p

)Q

(∫
B(e,r)

∣∣∣∣∫ 1

0

P ′α(y)(X̃αK̃j)
(
(y−1)(t)x

)(1− t)M

M !
dt

∣∣∣∣2 dµ(y)

)1/2

=: F
(1)
j (x) + F

(2)
j (x).

Thus,∫
B(e,cr)c

|x|2N |Fj(x)|2dµ(x) .
∫
B(e,cr)c

|x|2N |F (1)
j (x)|2dµ(x) +

∫
B(e,cr)c

|x|2N |F (2)
j (x)|2dµ(x).

We first estimate
∫
B(e,cr)c

|x|2N |F (2)
j (x)|2dµ(x). Indeed, by Minkowski’s inequality and

Fubini’s theorem,∫
B(e,cr)c

|x|2N |F (2)
j (x)|2dµ(x)

.
∑

|α|≤dMc+1
[α]≥M+1

r
(1− 2

p
)Q
∫
B(e,cr)c

|x|2N
(∫

B(e,r)

∣∣∣∣∫ 1

0
P ′α(y)(X̃αK̃j)

(
(y−1)(t)x

)(1− t)M

M !
dt

∣∣∣∣2 dµ(y)

)
dµ(x)

≤
∑

|α|≤dMc+1
[α]≥M+1

r
(1− 2

p
)Q
∫
B(e,cr)c

|x|2N
∫ 1

0

(∫
B(e,r)

∣∣∣P ′α(y)(X̃αK̃j)
(
(y−1)(t)x

)∣∣∣2 dµ(y)

)1/2

dt

2

dµ(x)
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≤
∑

|α|≤dMc+1
[α]≥M+1

r
(1− 2

p
)Q

∫ 1

0

(∫
B(e,cr)c

|x|2N
∫
B(e,r)

∣∣∣P ′α(y)(X̃αK̃j)
(
(y−1)(t)x

)∣∣∣2 dµ(y)dµ(x)

)1/2

dt

2

=
∑

|α|≤dMc+1
[α]≥M+1

r
(1− 2

p
)Q

∫ 1

0

(∫
B(e,r)

|P ′α(y)|2
∫
B(e,cr)c

|x|2N
∣∣∣(X̃αK̃j)

(
(y−1)(t)x

)∣∣∣2 dµ(x)dµ(y)

)1/2

dt

2

.

Note that if y ∈ B(e, r), x ∈ B(e, cr)c and t ∈ [0, 1], then |(y−1)(t)x| ∼ |x|. Thus, for
every y ∈ B(e, r) and t ∈ [0, 1],∫

B(e,cr)c
|x|2N

∣∣∣(X̃αK̃j)
(
(y−1)(t)x

)∣∣∣2 dµ(x)

∼
∫
B(e,cr)c

|(y−1)(t)x|2N
∣∣(X̃αK̃j)

(
(y−1)(t)x

)∣∣2dµ(x)

≤
∫
G

|x|2N
∣∣(X̃αK̃j)(x)

∣∣2dµ(x)

= 2j(Q+2[α]−2N)

∫
G

|x|2N
∣∣(X̃αKj)(x)

∣∣2dµ(x)

. 2j(Q+2[α]−2N),

where for the last line we used Lemma 4.2. Inserting this estimate yields∫
B(e,cr)c

|x|2N |F (2)
j (x)|2dµ(x)

.
∑

|α|≤dMc+1
[α]≥M+1

r(1− 2
p

)Q2j(Q+2[α]−2N)

[∫ 1

0

(∫
B(e,r)

|P ′α(y)|2dµ(y)

)1/2

dt

]2

≤
∑

|α|≤dMc+1
[α]≥M+1

r(1− 2
p

)Q2j(Q+2[α]−2N)

∫
B(e,r)

|y|2[α]dµ(y)

∼
∑

|α|≤dMc+1
[α]≥M+1

r(2− 2
p

)Q+2[α]2j(Q+2[α]−2N).

With a similar but easier argument, we get the analogous estimate∫
B(e,cr)c

|x|2N |F (1)
j (x)|2dµ(x) .

∑
|α|≤dMc
[α]≥M+1

r(2− 2
p

)Q+2[α]2j(Q+2[α]−2N).

The details are left to the interested reader.
Therefore, we have∫

B(e,cr)c
|x|2N |Fj(x)|2dµ(x) .

∑
|α|≤dMc+1
[α]≥M+1

r(2− 2
p

)Q+2[α]2j(Q+2[α]−2N). (4.16)
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Inserting (4.13) and (4.16) into (4.12), and using that r ∼ 2−j0 , we obtain∫
B(e,cr)c

|Tσa(x)|pdµ(x)

.
∑
j∈Z

r
(2−p)Q

2
−pN

(∫
B(e,cr)c

|x|2N |Fj(x)|2dµ(x)

) p
2

.
∑
j≥j0

r
(2−p)Q

2
−pN[r(2− 2

p
)Q2j(Q−2N)

] p
2 +

∑
j<j0

∑
|α|≤dMc+1
[α]≥M+1

r
(2−p)Q

2
−pN[r(2− 2

p
)Q+2[α]2j(Q+2[α]−2N)

] p
2

∼
∑
j≥j0

2(j−j0)p(Q
2
−N) +

∑
j<j0

∑
|α|≤dMc+1
[α]≥M+1

2(j−j0)p(Q
2

+[α]−N).

Since N > Q(1/p− 1/2) > Q/2, we have∑
j≥j0

2(j−j0)p(Q/2−N) . 1.

Note that the index set I := {α ∈ Nn
0 : |α| ≤ dMc+1, [α] ≥M+1} has finite elements.

Moreover, the condition (4.8) implies that Q
2

+ [α]−N > 0 whenever α ∈ I. Thus∑
j<j0

∑
|α|≤dMc+1
[α]≥M+1

2(j−j0)p(Q
2

+[α]−N) . 1.

Therefore,

I2 =

∫
B(e,cr)c

|Tσa(x)|pdµ(x) . 1, (4.17)

Combining (4.10) and (4.17), we obtain

‖Tσa‖L2(G) . 1.

This completes the proof of Theorem 1.1. �
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