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1. Introduction and theoretical model 
Tearing modes and neoclassical tearing modes (NTMs) can often be unstable in tokamak 

plasmas, leading to magnetic islands inside the plasmas, which have been found 
experimentally to degrade the energy confinement and to limit the β value of tokamak 
plasmas well below the ideal MHD limit [1-4]. The intrinsic error field of tokamaks or 
externally applied resonant magnetic perturbations (RMPs) can significantly affect the tearing 
modes [5-13]. For the plasma being originally stable to tearing modes, an applied RMP can 
penetrate through to the rational surface and generate a magnetic island there [5-7, 13]. Once 
an island is sufficiently large, it will be locked to the machine error field or applied RMPs [5, 
8-10, 12]. In addition, RMPs of moderate amplitude were found to reduce the island size in 
tokamak experiments [5, 11-12]. These different findings have attracted great interest in 
fusion research, and further investigation is required in order to understand the plasma 
response to RMPs. 

Here nonlinear numerical modeling based on reduced MHD equations has been carried out. 
Both the mode locking and mode stabilization by RMPs are obtained from numerical 
modeling. It is found that the suppression of the m/n=2/1 tearing mode by RMPs of moderate 
amplitude is possible for a sufficiently high plasma rotation velocity and lower Alfvén 
velocity. A larger plasma viscosity enhances the mode stabilization. 

The large aspect-ratio tokamak approximation is utilized. The magnetic field is expressed 

as B=B0tet-(kr/m)B0teθ+∇ψ×et, where B0t is equilibrium toroidal field, m/r and k=n/R are the 

wave vectors in eθ (poloidal) and et (toroidal) direction, respectively. The stream function φ is 

defined by v=∇φ×et. 
The Ohm's law, the equation of motion and the energy conservation equation are utilized. 

Normalizing the length to the minor radius a, time t to the resistive time τR=a2μ0/η, the helical 

flux ψ to aB0t, velocity v to a/τR, and electron temperature Te to Te(r=0), one has 

b
dψ E - η(j - j )
dt
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2 dt ⊥ ⊥∇ ∇ ∇ ∇ ,                 (3) 

where d/dt=∂/∂t +v⊥×∇, j=∇⊥
2ψ-2nBt/(mR) and jb=-cb(r/R)1/2neTe'/Bθ are the toroidal plasma 

current density and the bootstrap current density respectively. η is the normalized plasma 

resistivity, E the equilibrium electric field, and U=- ∇⊥
2φ the plasma vorticity. S=τR/τA, τA 

=a/VA is the toroidal Alfvén time, μ the plasma viscosity, χ|| and χ⊥ the parallel and 
perpendicular heat conductivities, Sp the heating power, Sm the poloidal momentum source, 
and ne the electron density. The effect of a single helicity RMP with m/n=2/1 is taken into 

account by the boundary condition ψm/n(r=a)=ψaaBtcos(mθ+nϕ). 

2. Numerical results and summary 
 Equations (1)-(3) are solved simultaneously using the initial value code TM1, which has 

been used for modeling the nonlinear growth and saturation of NTMs and their stabilization 

by RF current earlier[10]. In figure 1 the normalized mode angular frequency, ωp/ω0, and the 
island width at nonlinear saturation are shown as a function of the applied RMP amplitude ψa 

for ω0=1.6×104/τR, S=107, μ=3a2/τR, χ⊥=3a2/τR, χ||=3.0⋅108a2/τR, and the bootstrap current 

density fraction at the resonant surface fb=jb/j0=0 [12]. ω0 is the original mode frequency 
without RMPs. A monotonic profile for the safety factor q is assumed with the q=2 surface 
located at rs=0.7a. Three different regimes are 
seen from figure 1:  
(i) Mode suppression regime (ψa<4.5×10-5aBt), 
in which the island width decreases with 
increasing RMP amplitude. It is interesting to 
note that the mode frequency decreases with 
increasing ψa for ψa≤3.1×10-5aBt but increases 
for 3.1×10-5aBt<ψa< 4.5×10-5aBt. Such a 
frequency increase is likely to be caused by 
weaker electromagnetic force acting on the 
island with decreasing island width.   
(ii) Small locked island regime (4.5×10-5aBt< 
ψa< 5.9×10-5aBt), in which the mode is locked to the RMP as indicated by the zero mode 
frequency, while the island width is very small, being different from the usual mode locking 
with a large island width. 
(iii) mode locking regime (ψa>5.9×10-5aBt), beginning from a large jump in the island width. 
The mode frequency is also zero in this regime, but the island width is significantly larger 
than the original one without RMP. 
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Fig.1 Normalized mode angular frequency 
and island width versus ψa. 
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Fig.2 (a) Required normalized original mode angular frequency, ω0τR, for mode stabilization by RMP versus 
magnetic Reynolds number S. The solid circles (empty squares) show the cases for which there is (no) mode 

stabilization. (b) Same as (a) except that the vertical axis is log(ω0τA). 

Figure 2(a) shows the required normalized original mode angular frequency ω0τR for 

mode stabilization by RMP versus magnetic Reynolds number S in the log(ω0τR)~log(S) 
plane. The solid circles (empty squares) show the case for which there is (no) mode 

stabilization. The required ω0τR for mode stabilization is proportional to S. When the mode 

angular frequency is normalized to the Alfvén time τA as shown in figure 2(b), however, the 

required ω0τA for mode stabilization is nearly a constant for different S values. The critical 

value is log(ω0cτA)=-3.18, and above which the 2/1 tearing mode can be stabilized by RMPs 
of moderate amplitude. Below this value no mode stabilization by RMPs is found. The value 

of log(ω0cτA)=-3.18 corresponds to ω0cτA=6.6×10-4 or f0c=ω0c/2π=4.77 kHz for typical 

J-TEXT experimental parameters (τA=2.2×10-8s). For a lower Alfvén velocity the critical 
mode frequency for the mode stabilization by RMP is lower. 
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Fig.3 Same as figure 2 except for the plasma viscosity μ=3a2/τA (red) and μ=30a2/τA (blue). A larger plasma 

viscosity enhances the mode stabilization. 

In figure 3, the required original mode angular frequency ω0τR for mode stabilization by 

RMPs is shown as a function of log(S), with the plasma viscosity μ=3a2/τA (red) and 

μ=30a2/τA (blue). For μ=3a2/τA, the critical value is log(ω0cτA)=-3.18 as also seen from figure 

2. For μ=30a2/τA, the critical value is reduced to log(ω0cτA)≈-4.2, which shows that the critical 
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mode frequency is inversely proportion to plasma viscosity, indicating that a larger plasma 
viscosity enhances the mode stabilization by RMPs.  
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Fig.4 Same as figure 2 except for the bootstrap current density fraction fb=0 (red) and =5%. The bootstrap 

current perturbation reduces the stabilizing effect of RMPs on tearing modes. 

To study the effect of the bootstrap current perturbation, in figure 4 the required original 

mode angular frequency ω0τR for mode stabilization by RMP is shown as a function of log(S) 
for fb=0 (red) and fb=5% (blue). The critical mode frequency for fb=5% is much larger than 
that for fb=0 at low S values. When S is larger than 107, the difference between these two 
cases is smaller. Further calculations with S=107 show that when fb>8.5%, there is no mode 
stabilization by RMP.  

In summary, nonlinear numerical modeling based on reduced MHD equations has been 
carried out. Both the mode locking and mode stabilization by RMPs are obtained from 
numerical modeling. In addition, it is found that the mode stabilization by RMP is possible for 
a sufficiently high island rotation frequency and a low Alfvén velocity. A larger plasma 
viscosity enhances the mode stabilization. This work is supported by the Ministry of Science 
and Technology (Contract No. 2010GB107004, 2011GB109001, and 2008CB717805,) and 
the Chang-Jiang scholar project of the Ministry of Education, China. 
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