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The bending instability characteristics of double-walled carbon nano(@&8\Ts) of various configura-
tions are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction
energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube
interaction energy is calculated using the van der Waals interatomic potential. This study shows that the
bending instability may take place through the formation of a single kink in the midpoint of a DWNT or two
kinks, placed symmetrically about the midpoint, depending on both the tube length and diameter. The double-
kink mode is more favorable for longer DWNTSs with the same diameter, and there exists a threshold length for
a fixed diameter, below which the single-kink mode occurs at the onset of the bending instability and above
which the double-kink mode prevails. The onset characteristic of bending instability is determined by the
effectiveness of the intertube interaction in transferring the load from the outer tube onto the inner tube, and the
load-transfer effectiveness increases with the increasing tube length. For a fixed length/diameter ratio, the
load-transfer effectiveness is found to decrease with the increasing diameter for smaller tubes while it increases
for larger tubes, and, thus, the double-kink mode can prevail for both small DWNTs and large DWNTSs.
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I. INTRODUCTION tinuum elastic shell model with the results from the detailed

Mechanical properties of carbon nanotull€NTS) have ab initio and semiempirical studies of single-w_alled carbon
been a vibrant subject of research ever since the discovery §RNOtUPEESWNTS, that the shell model of continuum elas-
CNTs! which was motivated largely by many envisioned UCity works remarkably well in modeling mechanical behav-
applications, such as constituents in composite materials ¢¢'S Of CNTs, even at the limit of the linear range where

extremely high strength/weight ratios because of their pre|_nstabilities occur. For modeling the mechanical instabilities

dicted unusually high axial strendtfiand as components of of MWNTs using essentially continuum approaches, we note

2,23 i H H .
nanoscale instruments, including probes of high-resolutiorlli_he V\{[orlrzggsR& . olr) buckling ﬂﬂkdeg an|aI c?mpres?on, of
scanning force microscop@snanobearings of superlow Iuetal’ *==on rippiing, a wavylike detormation mode, un-

T . . der bending; and of Zhangt al?® on fracture nucleation
7 9 1 1
friction, _and mol_el(iular oscillators of frequency as high 3Swhich are closely related to the present development of a
several gigahert?-14 There have been, for example, con-

i imental effolsL8 t th ol hybrid model for kinking of double-walled nanotubes
muouys experimental - etior 0 measure Ine axia (DWNTs), an instability phenomenon taking place under se-
Young's modulus and axial strength of CNTs, which haveyere pending. lijimeet al2° have reported that both SWNTs

been predicted to be extremely high by various theoreticajng MWNTs were observed to kink under severe bending in
investigations, such as those cited above. We refer to a recefifejr high-resolution electron microscopy studies. The
article of Sinnott and Andrew$ for an extensive review on single-kinking mode was observed for SWNTs, while both
this topic from the engineering perspective. Although nanothe single and double-kinking modes were observed for
scopic systems are often perceived to be better modeled UWNTSs. They have further studied the bending instabilities
ing atomic or molecular models, continuum approaches havey computer simulations for both SWNTs and DWNTSs, and
been increasingly sought to model CNTs because atomisti® their simulations, the interaction between the carbon at-
simulations remain prohibitively expensive in many such in-oms within the same wall was modeled by the Tersoff Bren-
vestigations in which large length/diameter ratios of CNTsner many-body potentidl—° In the case of DWNTSs, the
and/or interactions of CNTs with the external environmentinteraction between the carbon atoms in the two different
have to be considered, and systems involving multiwalledvalls is modeled by the van der Waals interaction potential.
nanotubegMWNTS) pose even more severe challenges toTheir simulation results are compared with the experimental
atomistic simulations. As noted by lijimet al,?° CNTs are  observations quite consistently for SWNTs, though not so
desired to have large length/diameter ratios for most applicafavorably for DWNTs. We have also noted the simulations of
tions in which their mechanical properties are vitally impor- Yakobsonet al® and those of Sears and B&ftan the kink-
tant. ing of SWNTs and their estimate of the critical bending cur-
Among the theoretical investigations on mechanical propvature at which kinking takes place. Furthermore, it has been
erties of CNTs using the continuum approach, we take parproposed in literaturé! that the mechanical buckling prop-
ticular note of the work by Yakobson and Avoufisin which  erties of CNTs would lessen the imaging force exerted on
they have shown, by comparing the predictions of the consamples in scanning probe microscopy, making CNT scan-
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> FIG. 1. Schematic illustration of a cross sec-
I tion of a DWNT in noncoherent bending, with
‘ ‘ being the eccentric distance.

1, D; > h —>»

A D;

ning probes potentially ideal for imaging soft materials, in-tion, it indicates that the double-kink mode prevails for
cluding biological samples in liquid environments. longer DWNTs with the same diameter. For DWNTs of a
The simulations of lijimaet al?° for a DWNT of inner- fixed diameter, there exists a threshold length below which
tube diameterD;=1 nm, outer-tube diameteD,=1.7 nm the single-kink mode occurs at the onset of the bending in-
and of a length less than 9.26 nifimited by the maximum stability and above which the double-kink mode prevails.
system size of 3000 atomsuggest that the onset of the Physically, the onset characteristic of bending instability is
bending instability occurs through the formation of a singledetermined by the effectiveness of the intertube interaction in
kink in the middle of the DWNT and that the single kink transferring the load from the outer tube onto the inner tube,
evolves into two kinks placed symmetrically about the mid-and the load-transfer effectiveness increases with the increas-
point through a postbuckling transition upon further bendinging tube length for a fixed diameter. For a fixed length/
This has brought us to questiofi) whether or not the char- diameter ratio, the load-transfer effectiveness is found to de-
acteristics of bending instability of a DWNT depend on its crease with the increasing diameter for smaller tubes while it
configuration parameters, the length and the diameters, imcreases for larger tubes, and, thus, the double-kink mode
particular, or more specifically, whether or not the onset ofcan prevail for both small and large DWNTs.
the bending instability takes place through the formation of
the two kinks, instead of a single one, for DWNTSs of length
and diameter different from those prescribed by lijigtal., Il. EFFECT OF INTERTUBE INTERACTIONS
and(ii) if the answer is yes, then what determines whether a ON BENDING
single kink or two kinks form in a DWNT at the onset of the
bending instability. The simulations required to investigate We consider a section of a DWNT of length inner and
these issues would be extremely expensive because omgter diameters an®, and D, and interwall spacing
would need to simulate DWNTs of various configurations,=(D,—~D1)/2, taken to be 0.34 nnias schematically illus-
some of which are very long tubes. We have therefordrated in Fig. 1 and study its bending behavior when sub-
adopted a hybrid approach, in which the intratube interactiojected to a bending momeNt at each of its two ends. In this
energy is modeled with the bending deformation energy usdevelopment, we characterize the bending-induced change of
ing the elastic theory of beams and the intertube interactiothe interaction between atoms within the same tube by the
energy is calculated using the van der Waals interatomic pdsending-deformation energy in the continuum theory of elas-
tential. Our model shows that the single-kink mode indeedic beams, and we thus model each of its two constituent
appears at the onset of the bending instability for DWNTSs oftubes as a linear-elastic continuum beam of a thin-walled
diameters and length/diameter ratios approximately the sanrcular cross section. Correspondingly, the total deformation
as those given in the work of lijimat al,2° while in addi-  energy of the DWNT resulted from bending is given as
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L 0.09 . — -
W= fo [%E|1(K1)2+ %E|2(K2)2]dxy (1) 008k
whereEl;, i=1,2,stand for the bending rigidities of the inner 007
and outer tubes, witk being the axial Young’s modulus and 0.06f
I; the moments of inertiax; and «, are the curvatures of the 25005_
inner and outer tubes, respectively, within the bending plane. '
We characterize the interaction between atoms of the two 0.04¢
constituent tubes by the van der Waals interaction potential. 003}
We denote byw,(x) andw,(x), respectively, the bending de-
flections of the inner and outer tubes at the axial location 0.02p

In the case that the two tubes are bent coherently, i.e., the 0.01 -
two constituent tubes remain concenifig, =w,), the corre- 05 ! 1'50 (nm) 2

sponding change in the intertube interaction energy is negli-

gible. In the following, we estimate this change for nonco- FIG. 2. Plot of the dimensionless parametevs the average
herent bendingw,>w,; >0 for example, as schematically diameterD of DWNTs.

illustrated in Fig. 1, in whichd=w,—-w; denotes the eccen-

25 3

tri)cteorljzga;gzce, and we use the following Lennard-Jones pair .(D.0.5) = 7\'§Aa6d067r(D + h)E (D.6.6)
p : ; ne 1282 2 )T
1(ady) 1} 3
d=A| = ~— % | 2 SAm(D+h
¢(d) {2 gtz gé 2 - \6a27T<T>E5(D’0’5)- (5)

whered is the interatomic distance, the van der Waals dis-

tanced,, which is normalized by the carbon-carbon bondwhereD=(D,+D,)/2 is the average diameter of a DWNT,
lengtha (a=0.142 nm), and the energy constaAtare taken, andEg andE,; are two elliptical integrals defined by
respectively, to be 2.362 and 2430 "° Jnf, for graphite3?

We locate an atom of the inner tube by its coordinates h\2 -2

(da, 6,2) and, correspondingly, an atom of the outer tube by En(D, 6,6) = {(T) + daz}

(R,0,2). We calculate the interaction ener@y, between a
single carbon atom of the inner tube and all the atoms of the
outer tube by summing E@2) over all the atoms of the outer
tube, and our calculations show that all the tube atoms with
|Z-2|> 7a together contribute less than 1% to the interaction 1,
energy ®4, for the inner tube diameteb; ranging from

~0.3 to 100 nm, as reported previously by Zhesigal3*

For tubes of length substantially longer tham(Z1 nm), we k(D,#8,8) = 5 5.
take®, to be independent of the axial coordinateapproxi- (D+h)*+4d,
mately. To obtain an analytical representationdgr we use

an alternative approach by replacing the discrete distributiod his leads to the intertube interaction energy per unit length
of atoms on the outer tube with a continuous distribution ofof the inner tubeP(5;R) and its changé'(5;D) correspond-
the same atom density/8/9a2. We note the use of the same ing to a small eccentric distanagas follows:

approach by Henrardt al33 and Zheng and Jiaf@to cal-
culate the intertube interaction energies, respectively, for
bundles of single-walled carbon nanotubes and for a multi-
walled carbon nanotube with an extruded core. This alternate
approach leads to 2

- Q‘f_ﬂ Es(D, 6, 5)dad6>, (8)

X f . [1+k(6,5)cos®] ™%dO (6)

- h)d,
4(D +h) o

D+h\( 7 g
d(8;D) = WA<T> (9—6a2d06 f E;1(D, 6,8)d,d6

cpl(D,a,a):g f ! f ’ H(d)dZRdD 3)

with I'(8;D) = ®(8;D) - ®(0;D) = aCD&, (9)

D+h

2 - 0 4 i
d2=da2+< . ) _ (D +h)d, cos® - 0) + 22, where the energy consta@=1.0x 10?° J/m* and the di

mensionless parametar=[®"(0;D)]/CD. We plot in Fig. 2
the parametew versus the average tube diameter D, and we

D-h\2 5 see that it decreases rapidly with the increasing diameter for
(T) =d,” + & - 2d,5cogw/2 - 6). (4)  small tubes and is nearly constant for large tulaale thus
obtain the following estimate for the increase of the intertube
Evaluating the integral in Eq3), we obtain interaction energy due to bending:
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These are the bending equations, in which the terms at the

In a stable conﬁguranon, the variation of t_he total Comple_right-hand sides represent the effects of the intertube interac-
mentary energy, defined as the sum of the intratube deforma[\—

tion energyW and the intertube interaction energlly sub- lon on the inner and the outer model tubes in bending,
tracted by the total work done by all the external loads, mus}NhICh always work against noncoherent bending # w,).

vanish for all the deformation variations permitted by theer}r;h; gisavéTnvr\]I:;t%bfmgé?vTrﬂS\; ;hz;n;zr;vnalilnméeriztlon
boundary conditions. In the present analysis, the DWNT is @ 2 al4,

subjected to only a bending momeldt at each of its two works to promote the bending deflection, while the effect

ends of the outer tube, and, thus, the total work is given aﬁn the outer tube, aCD(w,~w), reduces the bending de-

M{ [dw,(x)/dX]| e — [dWs(x)/dX]|col. Approximating the ectionw,. The more coherent the bending, the smaller the

bending curvatures by the second derivatives of the correEffect of the interwall interaction against bending, and this

sponding bending deflection functions, we obtain the foIIow-?ﬁeCt. vamshgs ata pe_rfectly poherent bendlng conﬁgurguon,
n which the intertube interaction energy remains minimized.

ing representation for the variation of the complementar)) The ab bendi i ; lid until instabili
energy corresponding to deflection variatiaig; and dws: _ € above bending equations rémain valld unti Instabri-
ties take place. In the elastic theory of continuum beams, a

L{ dAw, beam becomes buckled if further bending results in a larger
J {Ell— +cd(wy — wz)} oW increase of the deformation energy than buckling. The Euler
0 dx’ buckling load* for a beam structure of length, moment of
dw, inertia |, and Young’s modulug, is given asP.=#?EIl/L?,
+ {EIZ—X4 +cd(w2—w1)}5wz dx and correspondingly, the in-plane critical strain for a thin-
d wall circular beam iss,~0.57D-/2L)?, with D being the
d?w; \ d(Sw;) beam diameter, derived through dividing the buckling load
+Ely e ) dx by the beam cross-sectional area and then by the axial
X x=0L Young’s modulus. In the classic theory of continuum beams,
+El (M) d(ow,) _E| d_3W1aN a beam consisting of two concentric tubes, with no intertube
N A P V<R interactions, cannot sustain further bending when the maxi-
3w mum compressive strain in one of the constituent tubes
~El, ung -M d(ow,) ) (11  reaches the corresponding critical value, while a DWNT is
dx’ x=0,L dx  |y=oL expected to have a higher strength against buckling because

) ) _ of the presence of the intertube interaction. Our hybrid
In the elastic theory of continuum beams, the second derivanode| tube is therefore assumed to be capable of sustaining
tive of the bending deflection multiplied by the bending ri- fyrther bending, without inducing instabilities, after the
gidity is equal to the bending moment, and its third deriva-grajin in one of the two constituent tub@e inner or the
tive multiplied by the bending rigidity is identified as the oytep becomes larger than the corresponding critical strain
shear force, i.e., the resultant transverse force acting withify one or more locations, until the strains in both the inner
the cross section of the beam. Noting that the inner tube oing outer tubes exceed the respective critical strains at the
the DWNT is subjected to neither bending moments nOlsame axial location. Here we have assumed that the consti-
transverse loads at its two ends, and that the outer tube {§tjve stress-strain relations of the two constituent tubes re-
subjected to a bending momeWt at each of the two ends, majn within the linear elastic limit. We note that the critical
we impose the following boundary conditions: for the iNNerpending strain is usually taken to be twice the critical in-

tube plane strain resulted from the instability analysis of columns,
Pw P cpnsidering that the strain distributgs linearly along 'the rad'ial
E|l_1 -0 andEIl—l =0 forx=0,L, (12) dlr_ect|on within the_ tube cross §ect|on under bending while
dx? dx® uniformly under axial compression. In Sec. Il we solve the
bending equations with the boundary conditions given above
and for the outer tube and determine the critical bending momewit causing the

o P onset of instabilities, when 'ghere is at least one location, de-
Elzﬂ: M andElL,——2=0 forx=0L. (13 hoted byx, where the strains of both the inner and outer
dx? dx® tubes reach or exceed the respective critical straing,
:(7TD1/2L)2 and SZC:(WD2/2L)2.
Requiring that the variation of the complementary energy There have been different choiégsor the values of the
vanish for all deformation variations permitted by the bound-yall thickness and the axial Young's modulus defined ac-
ary conditions leads to the following Euler-Lagrange equacordingly, for the continuum shell of model nanotubes. In
tions: many continuum studies, the wall thickness and the axial
Young's modulus are, respectively, taken to be the represen-
L“)’(‘f - (14) tative thickness of the graphite interplanar spacing
d

El
! (~0.34 nm and the in-plane elastic modulus of graphite

aCD(w, = wy),
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0.18 0.06
o b B 7T
0.04 . .
£ . £ FIG. 3. Sectional maximum of the compres-
g0 & sive strain vs the axial coordinatefor both the
0.02 & inner and outer tubega) for a DWNT of length/
Rl S—- diameter ratioL/D=7 and average diameter
D=1.35 nm, and(b) for a DWNT of length/
0.00 0.00 ; ; ~ :
00 02 04 08 08 10 00 o0z o4 06 o8 10 cl;la_Ttegtgrn::tloL/D—g.z and average diameter
Non-dimensional length of tube Non-dimensional length of tube T '
(a) —— Inner tube (b)
----- Quter tube

(1.06 TPa. To make the results from the continuum shell have estimated that the length of their model SWNT should
model quantitatively the same as their simulation results obe shorter than 9.26 nm, considering their statement that
atomistic models, Yakobsoet al?* have suggested that the their simulations are limited to no more than 3000 atoms.
representative thickness of the continuum shell be taken a4, thus, first consider a DWNT of an average diaméxer
0.066 nm, and, correspondingly, this leads to the Young's 1.35 nni=0.5D;+D,)] and a length/diameter ratb/D
modulus of the continuum shell to be 5.5 TPa. We also noté& 7, and then we calculate the maximum compressive strains
the suggestion of R4 that the flexural rigidity of each con- at each cross section of axial coordinatéor both the inner
stituent be regarded as an independent material paramet&fd outer tubes, and for each prescribed bending moment.

instead of a parameter derivable from the wall thickness,
axial Young’s modulus, and Poisson ratio. In our illustrative
numerical calculations, we have followed the above sugge

tion of Yakobsonet al?!

Ill. NUMERICAL RESULTS AND DISCUTION

We now proceed with numerical analysis based on th

following dimensionless formulation:

We have found that the maximum compressive strain at ev-
ery cross section of the outer tube exceeds the critical strain

Lo before the maximum compressive strain of the inner tube

reaches its critical value;; at any of its cross sections. Ex-
amining the sectional maximum of the compressive strain
versus the axial coordinate for both the inner and outer
tubes reveals that the sectional maximum for the outer tube
decreases monotonically from its maxima at the two ends to
§ts minima at the midpoint, while the sectional maximum for
the inner tube increases monotonically from zero at its two

dw, _ _ _ ends to the maxima occurring at the midpoint, both being
rra == Cy(Wy = Wy), (16)  symmetric about the midpoint as expected. On further in-
creasing the bending moment ¥, =676 eV, the global
_ maximum compressive strain of the inner tube occurring at
L‘Wz = -G, (W, — W) (17) its midpoint exceeds its critical value, as shown in Fi@)3
dxt 272 TR leading to instability, and, thus, a single kink forms at the
midpoint of the modeling beam for the DWNT. Correspond-
d?w; dw; o ingly, the critical bending angl®,,=ML/(El) has an ap-
e 0 andﬁ =0 forx=0,1, (18)  proximate value 71°.
To examine the effect of the tube diameter on the bending
— _ instability, we gradually increase the length/diameter ratio
dw, _ I\Wandd—awz -0 forx=01 (19) from L/D=7, while keeping the average diameter the same

e ax

wherex=x/L, w;=w;/D, W,=W,/D, ¢,=aCDL*/(El,), C,

(i.e., D=1.35 nm and find that, untilL/D>8.2, the onset
characteristic of the bending instability remains the same
(i.e., occurrence of a single kink at the midpoint of the

=aCDL*/(El,), andM=ML?/(EI,D). We note that one has beam), although the critical bending moment deceases with
to fix at least two points of the beam in the numerical calcuthe increasing length/diameter ratio. The reduction of the
lations to avoid rigid rotations and translations. We havecritical bending moment has two caus@$the critical com-
therefore required that the deflection of the outer tube vanispressive strains decrease quadratically with the increasing
at the both ends and have verified in all the calculations thaength/diameter ratio andi) the inner tube shares increas-
the share forces at the both ends vanish identically, as réagly more bending load with the increasing length because
quired by the second boundary condition stated in (&6). the external bending moments are applied on the outer tube
lijima et al?® have reported that the onset of bendingand the loads are transferred onto the inner tube over the
instabilities in their simulations of a DWNT took place as alength through the intertube interaction. After the length/
single kink formed at the midpoint of the DWNT, for which diameter ratio exceeds a threshold valu®=8.2, a transi-
the diameters of the inner wall and the outer wall are given tdgion in the bending instability mode occurs and the onset of
beD;=1.0 nm andD,=1.7 nm, respectively. Although they the bending instability takes place through the formation of
did not specify the length of their nonhelical DWNT, we two kinks, placed symmetrically about the midpoint of the
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beam, instead of a single kink at the midpoint. In the further 1000
simulation, the profiles of the sectional maximum of the
compressive strain versus the axial coordinate remain the 800

same for both the inner and outer tubes, but the global maxi-
mum of the compressive strain of the inner tube, however,
exceeds its critical value at the bending momévit

=224 eV before its outer tube counterpart reaches the corre- J 00

800

sponding critical value. As the bending moment increases lbsoo

from 224 to 237 eV, the global maxima of the outer tube |

occurring at the two ends increase correspondingly to reach 500}

the critical value, meanwhile the inner tube has developed a

middle portion, within which the sectional maximum of the 404 . . . .
compressive strain at every cross section has exceeded its 5 1 8 ) 2 25 3

critical value. At this point, the model beam is capable of
sustaining further bending because there is not a single cross FIG. 4. Plot of the dimensionless paraméggivs the diameter
section at which the sectional maximum compressive strainr DWNTs of length/diameter ratic/D=8.4.
of both the inner and outer tubes have reached their respec-
tive critical values. On further increase of the bending mo-further bending. We note from the dimensionless formulation
ment to M, =267 eV, we find two cross sections, located [Egs. (16)<19)], that the dimensionless interaction param-
symmetrically with respect to the midpoint of our model eterc, is the primary indicator for the effectiveness of the
beam, in which the sectional maximum compressive straingtertube interaction in transferring the load from the outer
of both the inner and outer tubes have reached their respetube to the inner tube and find that this parameter decreases
tive critical values, as shown in Fig.(18, leading to the with the diameter for small DWNTs and increases with the
formation of two kinks. The corresponding critical bending diameter for larger DWNTS, and the turning point varies with
angle 6., is 37°. Our further calculations show that the dis- the length/diameter ratio. We plot in Fig. 4 the dimensionless
tance separating the two kinks increases with the increasinigteraction parameter, versus the diameter for DWNTs of
length/diameter ratio, when the average diameter is kept corthe length/diameter ratib/D=8.40, slightly larger than the
stant. threshold length/diameter ratio, 8.20, above which the
We turn now to reveal the effect of the diameter of thedouble-kink mode occurs at the onset of bending instability
DWNT at a fixed-length/diameter ratio on the onset of theand below which the single-kink mode takes place. As seen
bending instability. We note, from the above simulations, thafrom Fig. 4, the dimensionless interaction parametede-
whether the single- or double-kink mode occurs at the onsetreases with the increasing diameter from 1.35 to 1.50 nm,
of the bending instability, this corresponds to whether theand this decrease is shown to be significant enough to cause
maximum compressive strain at the midpoint of the outertthe transition of the onset of bending instability from the
tube reaches the outer tube critical strain before that of thdouble-kink mode to the single-kink mode, as illustrated in
inner tube reaches the corresponding critical strain or vicdig. 5a), which shows that the maximum compressive strain
versus. Noting the fact that the critical strains for both theat the midpoint of the inner tube reaches its critical value
inner and outer tubes vary insignificantly with the averageafter that of the outer tube has exceeded the corresponding
diameterD at a fixed-length/diameter ratio and for the aver-critical value for a DWNT of diameteD=1.5 nm and
age diametelD much larger than the interwall spacirlg length/diameter ratid./D=8.40, leading to a single kink at
(Ref. 36, we see that the bending instability mode is deterthe midpoint. The dimensionless interaction parametes
mined by the effectiveness of the intertube interaction inseen in Fig. 4 to increase with the further increasing diameter
transferring the load from the outer tube to the inner tubefrom 1.5 nm, and this increase is expected to lead to the
The more effective the intertube interaction in the load transtransition reversal, i.e., from the single-kink mode back to
fer, the larger the increase in the maximum compressivéhe double-kink mode when it becomes significantly large, as
strain is at the midpoint of the inner tube in responding toit is shown in Fig. $b) that the maximum compressive strain

0.08 0.8 FIG. 5. Sectional maximum of the compres-
el e sive strain vs the axial coordinatefor both the
006 } 92; .......... 006 Fu- et . inner and outer tubes for a DWNT of length/
c € Eptae et diameter ratioL/D=8.4 (a) at D=1.5 nm the
Soos b Soo4 maximum compressive strain at the midpoint of
[%) w o . . .
- 1 the inner tube reaches its critical value after that
002 F ‘“ 0.02 of the outer tube has exceeded the corresponding
critical value, leading to a single kink at the mid-
0.00 0.00 point; (b) at D=3 nm the maximum compressive
00 02 04 06 08 10 6o o2 04 08 080 strain at the midpoint of the inner tube reaches its
Non-dimensional length of tube Non-dimensional length of tube critical value before that of the outer tube reaches
(a) — Inner tube (b the corresponding critical value, leading to two
""" Outer tube kinks upon further bending.

045403-6



BENDING INSTABILITY CHARACTERISTICS OF.. PHYSICAL REVIEW B 71, 045403(2005

at the midpoint of the inner tube reaches its critical valueexists a threshold length below which the single-kink mode
before that of the outer tube has exceeded the correspondimgcurs at the onset of the bending instability and above
critical value for a DWNT of diametelD=3.0 nm and which the double-kink mode prevails. Physically, the onset
length/diameter ratic./D=8.40, and that this would lead to characteristic of bending instability is determined by the ef-
the double-kink mode when the onset of bending instabilityfectiveness of the intertube interaction in transferring the
occurs upon further bending. . load from the outer tube onto the inner tube, and the load-
In conclusion, we present a hybrid model for a DWNT transfer effectiveness increases with the increasing tube
subjected to bending in which the bending-induced changgngth for a fixed diameter. For a fixed-length/diameter ratio,
of the interaction between atoms within the same wall isthe |oad-transfer effectiveness is found to decrease with the
described as the bending deformation energy in the conncreasing diameter for smaller tubes while increase for
tinuum theory of elastic beams, while the correspondingarger tubes, and, thus, the double-kink mode can prevail for
change in the interaction between atoms of two constituengoth small and large DWNTSs. We have attempted to compare
walls is characterized by the van der Waals interaction pogyr predictions with HRTEM images of bent CNTs in litera-
tential. This Simple model indicates that the bending insta‘ture, but this Comparison has not led to meaningfu| conclu-
bility may take place through the formation of a single kink sjons because experiment data for kinking of double-walled
at the midpoint of the beam or two kinks placed symmetri-cNTs, including lengths and diameters, do not appear to be
cally about the midpoint of the beam, depending on both theyajlable. We have found some excellent HRTEM images of
tube length and diameter. These two distinct modes of bendhe pent CNTs ofnore than two wallsand are planning to
ing instability have both been observed by lijigal,**and  generate our analysis to CNTs of more than two walls. We
for a DWNT of average diameter 1.35nm and length/fyrther note that the postinstability characteristics, such as
diameter ratio less than 7, their atomistic simulations suggeshe takeover of the double-kink mode to the single-kink
that the bending instability will take place by forming a mode upon further bending indicated by the simulations of
single kink at the midpoint of the DWNT, although the jjjima et al,2° cannot be analyzed with this simple model

double-kink mode becomes energetically favorable over thgecause of the limitation of the linear analysis employed.
single-kink mode upon further bending. The present analysis

confirms that the single-kink mode indeed appears at the
onset of the bending instability for the DWNT of the given
diameter and length/diameter ratio, while in addition, it indi- The support of the U.S. National Science Foundation
cates that the double-kink mode prevails for longer DWNTsthrough research Grant No. CMS-0140568 is gratefully ac-
of the same diameter. For DWNTSs of a fixed diameter, ther&nowledged.
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L. For a thin-wall circular beam ~ 7D3t/8 (t is the thicknesg
A= 7D.t, with D« being the diameter of the thin wall, and we
thus have the in-plane critical straig~0.5(7D-/2L)?, and the
corresponding bending critical strai,~ (7D./2L)%. For the
inner and outer walls of a double-walled CNT, with=D-h
and D,=D+h, respectively, this leads to the following expres-
sions for the bending critical straing;.=(7D;/2L)? and e
=(wD,/2L)2. Alternatively, &,.=(7D/2L)%(1-h/D)? and &y
=(wD/2L)?%(1+h/D)? with D being the average diameter of the
double-walled NT, and it is seen that they both vary insignifi-
cantly with the average diamet@ at a fixed length/diameter
ratio (D/L) and for the average diametermuch larger than the
interwall spacingh.



