
Title Bending instability characteristics of double-walled carbon
nanotubes

Author(s) Wang, Q; Hu, T; Chen, G; Jiang, Q

Citation Physical Review B - Condensed Matter And Materials Physics,
2005, v. 71 n. 4

Issued Date 2005

URL http://hdl.handle.net/10722/42639

Rights Physical Review B (Condensed Matter and Materials Physics).
Copyright © American Physical Society.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/37881954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bending instability characteristics of double-walled carbon nanotubes

Quan Wang,1 Ting Hu,2 Guanhua Chen,3 and Qing Jiang2,*
1Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando,

Florida 32816-2450, USA
2Department of Mechanical Engineering, University of California, Riverside, California 92521, USA

3Department of Chemistry, University of Hong Kong, Hong Kong, People’s Republic of China
(Received 4 June 2004; revised manuscript received 1 October 2004; published 6 January 2005)

The bending instability characteristics of double-walled carbon nanotubes(DWNTs) of various configura-
tions are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction
energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube
interaction energy is calculated using the van der Waals interatomic potential. This study shows that the
bending instability may take place through the formation of a single kink in the midpoint of a DWNT or two
kinks, placed symmetrically about the midpoint, depending on both the tube length and diameter. The double-
kink mode is more favorable for longer DWNTs with the same diameter, and there exists a threshold length for
a fixed diameter, below which the single-kink mode occurs at the onset of the bending instability and above
which the double-kink mode prevails. The onset characteristic of bending instability is determined by the
effectiveness of the intertube interaction in transferring the load from the outer tube onto the inner tube, and the
load-transfer effectiveness increases with the increasing tube length. For a fixed length/diameter ratio, the
load-transfer effectiveness is found to decrease with the increasing diameter for smaller tubes while it increases
for larger tubes, and, thus, the double-kink mode can prevail for both small DWNTs and large DWNTs.
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I. INTRODUCTION

Mechanical properties of carbon nanotubes(CNTs) have
been a vibrant subject of research ever since the discovery of
CNTs,1 which was motivated largely by many envisioned
applications, such as constituents in composite materials of
extremely high strength/weight ratios because of their pre-
dicted unusually high axial strength2–5 and as components of
nanoscale instruments, including probes of high-resolution
scanning force microscopes,6 nanobearings of superlow
friction,7–9 and molecular oscillators of frequency as high as
several gigahertz.10–14 There have been, for example, con-
tinuous experimental efforts15–18 to measure the axial
Young’s modulus and axial strength of CNTs, which have
been predicted to be extremely high by various theoretical
investigations, such as those cited above. We refer to a recent
article of Sinnott and Andrews19 for an extensive review on
this topic from the engineering perspective. Although nano-
scopic systems are often perceived to be better modeled us-
ing atomic or molecular models, continuum approaches have
been increasingly sought to model CNTs because atomistic
simulations remain prohibitively expensive in many such in-
vestigations in which large length/diameter ratios of CNTs
and/or interactions of CNTs with the external environment
have to be considered, and systems involving multiwalled
nanotubes(MWNTs) pose even more severe challenges to
atomistic simulations. As noted by Iijimaet al.,20 CNTs are
desired to have large length/diameter ratios for most applica-
tions in which their mechanical properties are vitally impor-
tant.

Among the theoretical investigations on mechanical prop-
erties of CNTs using the continuum approach, we take par-
ticular note of the work by Yakobson and Avouris,21 in which
they have shown, by comparing the predictions of the con-

tinuum elastic shell model with the results from the detailed
ab initio and semiempirical studies of single-walled carbon
nanotubes(SWNTs), that the shell model of continuum elas-
ticity works remarkably well in modeling mechanical behav-
iors of CNTs, even at the limit of the linear range where
instabilities occur. For modeling the mechanical instabilities
of MWNTs using essentially continuum approaches, we note
the work of Ru22,23 on buckling under axial compression; of
Liu et al.24,25 on rippling, a wavylike deformation mode, un-
der bending; and of Zhanget al.26 on fracture nucleation,
which are closely related to the present development of a
hybrid model for kinking of double-walled nanotubes
(DWNTs), an instability phenomenon taking place under se-
vere bending. Iijimaet al.20 have reported that both SWNTs
and MWNTs were observed to kink under severe bending in
their high-resolution electron microscopy studies. The
single-kinking mode was observed for SWNTs, while both
the single and double-kinking modes were observed for
MWNTs. They have further studied the bending instabilities
by computer simulations for both SWNTs and DWNTs, and
in their simulations, the interaction between the carbon at-
oms within the same wall was modeled by the Tersoff Bren-
ner many-body potential.27–29 In the case of DWNTs, the
interaction between the carbon atoms in the two different
walls is modeled by the van der Waals interaction potential.
Their simulation results are compared with the experimental
observations quite consistently for SWNTs, though not so
favorably for DWNTs. We have also noted the simulations of
Yakobsonet al.5 and those of Sears and Batra30 on the kink-
ing of SWNTs and their estimate of the critical bending cur-
vature at which kinking takes place. Furthermore, it has been
proposed in literature,31 that the mechanical buckling prop-
erties of CNTs would lessen the imaging force exerted on
samples in scanning probe microscopy, making CNT scan-
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ning probes potentially ideal for imaging soft materials, in-
cluding biological samples in liquid environments.

The simulations of Iijimaet al.20 for a DWNT of inner-
tube diameterD1=1 nm, outer-tube diameterD2=1.7 nm
and of a length less than 9.26 nm(limited by the maximum
system size of 3000 atoms) suggest that the onset of the
bending instability occurs through the formation of a single
kink in the middle of the DWNT and that the single kink
evolves into two kinks placed symmetrically about the mid-
point through a postbuckling transition upon further bending.
This has brought us to question:(i) whether or not the char-
acteristics of bending instability of a DWNT depend on its
configuration parameters, the length and the diameters, in
particular, or more specifically, whether or not the onset of
the bending instability takes place through the formation of
the two kinks, instead of a single one, for DWNTs of length
and diameter different from those prescribed by Iijimaet al.,
and(ii ) if the answer is yes, then what determines whether a
single kink or two kinks form in a DWNT at the onset of the
bending instability. The simulations required to investigate
these issues would be extremely expensive because one
would need to simulate DWNTs of various configurations,
some of which are very long tubes. We have therefore
adopted a hybrid approach, in which the intratube interaction
energy is modeled with the bending deformation energy us-
ing the elastic theory of beams and the intertube interaction
energy is calculated using the van der Waals interatomic po-
tential. Our model shows that the single-kink mode indeed
appears at the onset of the bending instability for DWNTs of
diameters and length/diameter ratios approximately the same
as those given in the work of Iijimaet al.,20 while in addi-

tion, it indicates that the double-kink mode prevails for
longer DWNTs with the same diameter. For DWNTs of a
fixed diameter, there exists a threshold length below which
the single-kink mode occurs at the onset of the bending in-
stability and above which the double-kink mode prevails.
Physically, the onset characteristic of bending instability is
determined by the effectiveness of the intertube interaction in
transferring the load from the outer tube onto the inner tube,
and the load-transfer effectiveness increases with the increas-
ing tube length for a fixed diameter. For a fixed length/
diameter ratio, the load-transfer effectiveness is found to de-
crease with the increasing diameter for smaller tubes while it
increases for larger tubes, and, thus, the double-kink mode
can prevail for both small and large DWNTs.

II. EFFECT OF INTERTUBE INTERACTIONS
ON BENDING

We consider a section of a DWNT of lengthL, inner and
outer diameters andD1 and D2, and interwall spacingh
=sD2−D1d /2, taken to be 0.34 nm(as schematically illus-
trated in Fig. 1) and study its bending behavior when sub-
jected to a bending momentM at each of its two ends. In this
development, we characterize the bending-induced change of
the interaction between atoms within the same tube by the
bending-deformation energy in the continuum theory of elas-
tic beams, and we thus model each of its two constituent
tubes as a linear-elastic continuum beam of a thin-walled
circular cross section. Correspondingly, the total deformation
energy of the DWNT resulted from bending is given as

FIG. 1. Schematic illustration of a cross sec-
tion of a DWNT in noncoherent bending, withd
being the eccentric distance.
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whereEIi, i =1,2,stand for the bending rigidities of the inner
and outer tubes, withE being the axial Young’s modulus and
I i the moments of inertia.k1 andk2 are the curvatures of the
inner and outer tubes, respectively, within the bending plane.

We characterize the interaction between atoms of the two
constituent tubes by the van der Waals interaction potential.
We denote byw1sxd andw2sxd, respectively, the bending de-
flections of the inner and outer tubes at the axial locationx.
In the case that the two tubes are bent coherently, i.e., the
two constituent tubes remain concentricsw1;w2d, the corre-
sponding change in the intertube interaction energy is negli-
gible. In the following, we estimate this change for nonco-
herent bending,w2.w1.0 for example, as schematically
illustrated in Fig. 1, in whichd=w2−w1 denotes the eccen-
tric distance, and we use the following Lennard-Jones pair
potential:32

fsdd = AF1

2

sad0d6

d12 −
1

d6G , s2d

whered is the interatomic distance, the van der Waals dis-
tanced0, which is normalized by the carbon-carbon bond
lengtha sa=0.142 nmd, and the energy constantA are taken,
respectively, to be 2.362 and 24.3310−79 Jm6, for graphite.32

We locate an atom of the inner tube by its coordinates
sda,u ,zd and, correspondingly, an atom of the outer tube by
sR,Q ,Zd. We calculate the interaction energyF1 between a
single carbon atom of the inner tube and all the atoms of the
outer tube by summing Eq.(2) over all the atoms of the outer
tube, and our calculations show that all the tube atoms with
uZ−zu.7a together contribute less than 1% to the interaction
energy F1, for the inner tube diameterD1 ranging from
,0.3 to 100 nm, as reported previously by Zhenget al.34

For tubes of length substantially longer than 7a s<1 nmd, we
takeF1 to be independent of the axial coordinatez, approxi-
mately. To obtain an analytical representation forF1, we use
an alternative approach by replacing the discrete distribution
of atoms on the outer tube with a continuous distribution of
the same atom density 4Î3/9a2. We note the use of the same
approach by Henrardet al.33 and Zheng and Jiang10 to cal-
culate the intertube interaction energies, respectively, for
bundles of single-walled carbon nanotubes and for a multi-
walled carbon nanotube with an extruded core. This alternate
approach leads to

F1sD,u,dd =
4Î3

9a2E
−p

p E
−`

`

fsdddZRdQ s3d

with

d2 = da
2 + SD + h

2
D2

− sD + hdda cossQ − ud + Z2,

SD − h

2
D2

= da
2 + d2 − 2dad cossp/2 − ud. s4d

Evaluating the integral in Eq.(3), we obtain

F1sD,u,dd =
7Î3Aa6d0

6p

128a2 SD + h

2
DE11sD,u,dd

−
Î3Ap

6a2 SD + h

2
DE5sD,u,dd, s5d

whereD=sD1+D2d /2 is the average diameter of a DWNT,
andE5 andE11 are two elliptical integrals defined by

EmsD,u,dd = FSD + h

2
D2

+ da
2G−m/2

3E
−p

p

f1 + ksu,ddcosQg−m/2dQ s6d

with

ksD,u,dd =
− 4sD + hdda

sD + hd2 + 4da
2 . s7d

This leads to the intertube interaction energy per unit length
of the inner tubeFsd ;Rd and its changeGsd ;Dd correspond-
ing to a small eccentric distanced as follows:

Fsd;Dd = pASD + h

2
DS 7

96
a2d0

6E
−p

p

E11sD,u,dddadu

−
2

9a4E
−p

p

E5sD,u,dddaduD , s8d

Gsd;Dd = Fsd;Dd − Fs0;Dd < 1
2aCDd2, s9d

where the energy constantC=1.031020 J/m4 and the di-
mensionless parametera=fF9s0;Ddg /CD. We plot in Fig. 2
the parametera versus the average tube diameter D, and we
see that it decreases rapidly with the increasing diameter for
small tubes and is nearly constant for large tubes.35 We thus
obtain the following estimate for the increase of the intertube
interaction energy due to bending:

FIG. 2. Plot of the dimensionless parametera vs the average
diameterD of DWNTs.
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fw1sxd − w2sxdg2dx. s10d

In a stable configuration, the variation of the total comple-
mentary energy, defined as the sum of the intratube deforma-
tion energyW and the intertube interaction energyU, sub-
tracted by the total work done by all the external loads, must
vanish for all the deformation variations permitted by the
boundary conditions. In the present analysis, the DWNT is
subjected to only a bending momentM at each of its two
ends of the outer tube, and, thus, the total work is given as
Mhufdw2sxd /dxgux=L− ufdw2sxd /dxgux=0j. Approximating the
bending curvatures by the second derivatives of the corre-
sponding bending deflection functions, we obtain the follow-
ing representation for the variation of the complementary
energy corresponding to deflection variationsdw1 anddw2:

E
0

L HFEI1
d4w1

dx4 + cdsw1 − w2dGdw1

+ FEI2
d4w2

dx4 + cdsw2 − w1dGdw2Jdx

+ EI1USd2w1

dx2 Ddsdw1d
dx

U
x=0,L

+ EI2USd2w2

dx2 Ddsdw2d
dx

U
x=0,L

− EI1Ud3w1

dx3 dw1U
x=0,L

− EI2Ud3w2

dx3 dw2U
x=0,L

− MUdsdw2d
dx

U
x=0,L

. s11d

In the elastic theory of continuum beams, the second deriva-
tive of the bending deflection multiplied by the bending ri-
gidity is equal to the bending moment, and its third deriva-
tive multiplied by the bending rigidity is identified as the
shear force, i.e., the resultant transverse force acting within
the cross section of the beam. Noting that the inner tube of
the DWNT is subjected to neither bending moments nor
transverse loads at its two ends, and that the outer tube is
subjected to a bending momentM at each of the two ends,
we impose the following boundary conditions: for the inner
tube

EI1
d2w1

dx2 = 0 andEI1
d3w1

dx3 = 0 for x = 0,L, s12d

and for the outer tube

EI2
d2w2

dx2 = M andEI2
d3w2

dx3 = 0 for x = 0,L. s13d

Requiring that the variation of the complementary energy
vanish for all deformation variations permitted by the bound-
ary conditions leads to the following Euler-Lagrange equa-
tions:

EI1
d4w1

dx4 = aCDsw2 − w1d, s14d

EI2
d4w2

dx4 = − aCDsw2 − w1d. s15d

These are the bending equations, in which the terms at the
right-hand sides represent the effects of the intertube interac-
tion on the inner and the outer model tubes in bending,
which always work against noncoherent bendingsw1Þw2d.
In the casew2.w1.0, for example, the interwall interaction
effect on the inner tube,aCDsw2−w1d, as seen in Eq.(14),
works to promote the bending deflectionw1, while the effect
on the outer tube, −aCDsw2−w1d, reduces the bending de-
flection w2. The more coherent the bending, the smaller the
effect of the interwall interaction against bending, and this
effect vanishes at a perfectly coherent bending configuration,
in which the intertube interaction energy remains minimized.

The above bending equations remain valid until instabili-
ties take place. In the elastic theory of continuum beams, a
beam becomes buckled if further bending results in a larger
increase of the deformation energy than buckling. The Euler
buckling load21 for a beam structure of lengthL, moment of
inertia I, and Young’s modulusE, is given asPc=p2EI /L2,
and correspondingly, the in-plane critical strain for a thin-
wall circular beam is«c<0.5spD* /2Ld2, with D* being the
beam diameter, derived through dividing the buckling load
by the beam cross-sectional area and then by the axial
Young’s modulus. In the classic theory of continuum beams,
a beam consisting of two concentric tubes, with no intertube
interactions, cannot sustain further bending when the maxi-
mum compressive strain in one of the constituent tubes
reaches the corresponding critical value, while a DWNT is
expected to have a higher strength against buckling because
of the presence of the intertube interaction. Our hybrid
model tube is therefore assumed to be capable of sustaining
further bending, without inducing instabilities, after the
strain in one of the two constituent tubes(the inner or the
outer) becomes larger than the corresponding critical strain
in one or more locations, until the strains in both the inner
and outer tubes exceed the respective critical strains at the
same axial location. Here we have assumed that the consti-
tutive stress-strain relations of the two constituent tubes re-
main within the linear elastic limit. We note that the critical
bending strain is usually taken to be twice the critical in-
plane strain resulted from the instability analysis of columns,
considering that the strain distributes linearly along the radial
direction within the tube cross section under bending while
uniformly under axial compression. In Sec. III we solve the
bending equations with the boundary conditions given above
and determine the critical bending momentMc causing the
onset of instabilities, when there is at least one location, de-
noted byxk, where the strains of both the inner and outer
tubes reach or exceed the respective critical strains,«1c
=spD1/2Ld2 and«2c=spD2/2Ld2.

There have been different choices25 for the values of the
wall thickness and the axial Young’s modulus defined ac-
cordingly, for the continuum shell of model nanotubes. In
many continuum studies, the wall thickness and the axial
Young’s modulus are, respectively, taken to be the represen-
tative thickness of the graphite interplanar spacing
s,0.34 nmd and the in-plane elastic modulus of graphite
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s1.06 TPad. To make the results from the continuum shell
model quantitatively the same as their simulation results of
atomistic models, Yakobsonet al.21 have suggested that the
representative thickness of the continuum shell be taken as
0.066 nm, and, correspondingly, this leads to the Young’s
modulus of the continuum shell to be 5.5 TPa. We also note
the suggestion of Ru22 that the flexural rigidity of each con-
stituent be regarded as an independent material parameter,
instead of a parameter derivable from the wall thickness,
axial Young’s modulus, and Poisson ratio. In our illustrative
numerical calculations, we have followed the above sugges-
tion of Yakobsonet al.21

III. NUMERICAL RESULTS AND DISCUTION

We now proceed with numerical analysis based on the
following dimensionless formulation:

d4w̄1

dx̄4 = − c̄1sw̄1 − w̄2d, s16d

d4w̄2

dx̄4 = − c̄2sw̄2 − w̄1d, s17d

d2w̄1

dx̄2 = 0 and
d3w̄1

dx̄3 = 0 for x̄ = 0,1, s18d

d2w̄2

dx̄2 = M̄ and
d3w̄2

dx̄3 = 0 for x̄ = 0,1, s19d

where x̄=x/L, w̄1=w1/D, w̄2=w2/D, c̄1=aCDL4/ sEI1d, c̄2

=aCDL4/ sEI2d, andM̄ =ML2/ sEI2Dd. We note that one has
to fix at least two points of the beam in the numerical calcu-
lations to avoid rigid rotations and translations. We have
therefore required that the deflection of the outer tube vanish
at the both ends and have verified in all the calculations that
the share forces at the both ends vanish identically, as re-
quired by the second boundary condition stated in Eq.(19).

Iijima et al.20 have reported that the onset of bending
instabilities in their simulations of a DWNT took place as a
single kink formed at the midpoint of the DWNT, for which
the diameters of the inner wall and the outer wall are given to
be D1=1.0 nm andD2=1.7 nm, respectively. Although they
did not specify the length of their nonhelical DWNT, we

have estimated that the length of their model SWNT should
be shorter than 9.26 nm, considering their statement that
their simulations are limited to no more than 3000 atoms.
We, thus, first consider a DWNT of an average diameterD
=1.35 nmf<0.5sD1+D2dg and a length/diameter ratioL /D
=7, and then we calculate the maximum compressive strains
at each cross section of axial coordinatex, for both the inner
and outer tubes, and for each prescribed bending moment.
We have found that the maximum compressive strain at ev-
ery cross section of the outer tube exceeds the critical strain
«2c, before the maximum compressive strain of the inner tube
reaches its critical value«1c at any of its cross sections. Ex-
amining the sectional maximum of the compressive strain
versus the axial coordinatex for both the inner and outer
tubes reveals that the sectional maximum for the outer tube
decreases monotonically from its maxima at the two ends to
its minima at the midpoint, while the sectional maximum for
the inner tube increases monotonically from zero at its two
ends to the maxima occurring at the midpoint, both being
symmetric about the midpoint as expected. On further in-
creasing the bending moment toMcr=676 eV, the global
maximum compressive strain of the inner tube occurring at
its midpoint exceeds its critical value, as shown in Fig. 3(a),
leading to instability, and, thus, a single kink forms at the
midpoint of the modeling beam for the DWNT. Correspond-
ingly, the critical bending angleucr=McrL / sEId has an ap-
proximate value 71°.

To examine the effect of the tube diameter on the bending
instability, we gradually increase the length/diameter ratio
from L /D=7, while keeping the average diameter the same
(i.e., D=1.35 nm) and find that, untilL /D.8.2, the onset
characteristic of the bending instability remains the same
(i.e., occurrence of a single kink at the midpoint of the
beam), although the critical bending moment deceases with
the increasing length/diameter ratio. The reduction of the
critical bending moment has two causes:(i) the critical com-
pressive strains decrease quadratically with the increasing
length/diameter ratio and(ii ) the inner tube shares increas-
ingly more bending load with the increasing length because
the external bending moments are applied on the outer tube
and the loads are transferred onto the inner tube over the
length through the intertube interaction. After the length/
diameter ratio exceeds a threshold valueL /D=8.2, a transi-
tion in the bending instability mode occurs and the onset of
the bending instability takes place through the formation of
two kinks, placed symmetrically about the midpoint of the

FIG. 3. Sectional maximum of the compres-
sive strain vs the axial coordinatex for both the
inner and outer tubes:(a) for a DWNT of length/
diameter ratio L /D=7 and average diameter
D=1.35 nm, and(b) for a DWNT of length/
diameter ratioL /D=9.2 and average diameter
D=1.35 nm.
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beam, instead of a single kink at the midpoint. In the further
simulation, the profiles of the sectional maximum of the
compressive strain versus the axial coordinate remain the
same for both the inner and outer tubes, but the global maxi-
mum of the compressive strain of the inner tube, however,
exceeds its critical value at the bending momentM
=224 eV before its outer tube counterpart reaches the corre-
sponding critical value. As the bending moment increases
from 224 to 237 eV, the global maxima of the outer tube
occurring at the two ends increase correspondingly to reach
the critical value, meanwhile the inner tube has developed a
middle portion, within which the sectional maximum of the
compressive strain at every cross section has exceeded its
critical value. At this point, the model beam is capable of
sustaining further bending because there is not a single cross
section at which the sectional maximum compressive strains
of both the inner and outer tubes have reached their respec-
tive critical values. On further increase of the bending mo-
ment to Mcr=267 eV, we find two cross sections, located
symmetrically with respect to the midpoint of our model
beam, in which the sectional maximum compressive strains
of both the inner and outer tubes have reached their respec-
tive critical values, as shown in Fig. 3(b), leading to the
formation of two kinks. The corresponding critical bending
angleucr is 37°. Our further calculations show that the dis-
tance separating the two kinks increases with the increasing
length/diameter ratio, when the average diameter is kept con-
stant.

We turn now to reveal the effect of the diameter of the
DWNT at a fixed-length/diameter ratio on the onset of the
bending instability. We note, from the above simulations, that
whether the single- or double-kink mode occurs at the onset
of the bending instability, this corresponds to whether the
maximum compressive strain at the midpoint of the outer
tube reaches the outer tube critical strain before that of the
inner tube reaches the corresponding critical strain or vice
versus. Noting the fact that the critical strains for both the
inner and outer tubes vary insignificantly with the average
diameterD at a fixed-length/diameter ratio and for the aver-
age diameterD much larger than the interwall spacingh
(Ref. 36), we see that the bending instability mode is deter-
mined by the effectiveness of the intertube interaction in
transferring the load from the outer tube to the inner tube.
The more effective the intertube interaction in the load trans-
fer, the larger the increase in the maximum compressive
strain is at the midpoint of the inner tube in responding to

further bending. We note from the dimensionless formulation
[Eqs. (16)–(19)], that the dimensionless interaction param-
eter c̄1 is the primary indicator for the effectiveness of the
intertube interaction in transferring the load from the outer
tube to the inner tube and find that this parameter decreases
with the diameter for small DWNTs and increases with the
diameter for larger DWNTs, and the turning point varies with
the length/diameter ratio. We plot in Fig. 4 the dimensionless
interaction parameterc̄1 versus the diameter for DWNTs of
the length/diameter ratioL /D=8.40, slightly larger than the
threshold length/diameter ratio, 8.20, above which the
double-kink mode occurs at the onset of bending instability
and below which the single-kink mode takes place. As seen
from Fig. 4, the dimensionless interaction parameterc̄1 de-
creases with the increasing diameter from 1.35 to 1.50 nm,
and this decrease is shown to be significant enough to cause
the transition of the onset of bending instability from the
double-kink mode to the single-kink mode, as illustrated in
Fig. 5(a), which shows that the maximum compressive strain
at the midpoint of the inner tube reaches its critical value
after that of the outer tube has exceeded the corresponding
critical value for a DWNT of diameterD=1.5 nm and
length/diameter ratioL /D=8.40, leading to a single kink at
the midpoint. The dimensionless interaction parameterc̄1 is
seen in Fig. 4 to increase with the further increasing diameter
from 1.5 nm, and this increase is expected to lead to the
transition reversal, i.e., from the single-kink mode back to
the double-kink mode when it becomes significantly large, as
it is shown in Fig. 5(b) that the maximum compressive strain

FIG. 4. Plot of the dimensionless parameterc̄1 vs the diameter
for DWNTs of length/diameter ratioL /D=8.4.

FIG. 5. Sectional maximum of the compres-
sive strain vs the axial coordinatex for both the
inner and outer tubes for a DWNT of length/
diameter ratioL /D=8.4 (a) at D=1.5 nm the
maximum compressive strain at the midpoint of
the inner tube reaches its critical value after that
of the outer tube has exceeded the corresponding
critical value, leading to a single kink at the mid-
point; (b) at D=3 nm the maximum compressive
strain at the midpoint of the inner tube reaches its
critical value before that of the outer tube reaches
the corresponding critical value, leading to two
kinks upon further bending.
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at the midpoint of the inner tube reaches its critical value
before that of the outer tube has exceeded the corresponding
critical value for a DWNT of diameterD=3.0 nm and
length/diameter ratioL /D=8.40, and that this would lead to
the double-kink mode when the onset of bending instability
occurs upon further bending.

In conclusion, we present a hybrid model for a DWNT
subjected to bending in which the bending-induced change
of the interaction between atoms within the same wall is
described as the bending deformation energy in the con-
tinuum theory of elastic beams, while the corresponding
change in the interaction between atoms of two constituent
walls is characterized by the van der Waals interaction po-
tential. This simple model indicates that the bending insta-
bility may take place through the formation of a single kink
at the midpoint of the beam or two kinks placed symmetri-
cally about the midpoint of the beam, depending on both the
tube length and diameter. These two distinct modes of bend-
ing instability have both been observed by Iijimaet al.,20 and
for a DWNT of average diameter 1.35 nm and length/
diameter ratio less than 7, their atomistic simulations suggest
that the bending instability will take place by forming a
single kink at the midpoint of the DWNT, although the
double-kink mode becomes energetically favorable over the
single-kink mode upon further bending. The present analysis
confirms that the single-kink mode indeed appears at the
onset of the bending instability for the DWNT of the given
diameter and length/diameter ratio, while in addition, it indi-
cates that the double-kink mode prevails for longer DWNTs
of the same diameter. For DWNTs of a fixed diameter, there

exists a threshold length below which the single-kink mode
occurs at the onset of the bending instability and above
which the double-kink mode prevails. Physically, the onset
characteristic of bending instability is determined by the ef-
fectiveness of the intertube interaction in transferring the
load from the outer tube onto the inner tube, and the load-
transfer effectiveness increases with the increasing tube
length for a fixed diameter. For a fixed-length/diameter ratio,
the load-transfer effectiveness is found to decrease with the
increasing diameter for smaller tubes while increase for
larger tubes, and, thus, the double-kink mode can prevail for
both small and large DWNTs. We have attempted to compare
our predictions with HRTEM images of bent CNTs in litera-
ture, but this comparison has not led to meaningful conclu-
sions because experiment data for kinking of double-walled
CNTs, including lengths and diameters, do not appear to be
available. We have found some excellent HRTEM images of
the bent CNTs ofmore than two wallsand are planning to
generate our analysis to CNTs of more than two walls. We
further note that the postinstability characteristics, such as
the takeover of the double-kink mode to the single-kink
mode upon further bending indicated by the simulations of
Iijima et al.,20 cannot be analyzed with this simple model
because of the limitation of the linear analysis employed.
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