19 research outputs found

    Advanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations

    Get PDF
    The ionospheric delay is of paramount importance to radio communication, satellite navigation and positioning. It is necessary to predict high-accuracy ionospheric peak parameters for single frequency receivers. In this study, the state-of-the-art artificial neural network (ANN) technique optimized by the genetic algorithm is used to develop global ionospheric models for predicting foF2 and hmF2. The models are based on long-term multiple measurements including ionospheric peak frequency model (GIPFM) and global ionospheric peak height model (GIPHM). Predictions of the GIPFM and GIPHM are compared with the International Reference Ionosphere (IRI) model in 2009 and 2013 respectively. This comparison shows that the root-mean-square errors (RMSEs) of GIPFM are 0.82 MHz and 0.71 MHz in 2013 and 2009, respectively. This result is about 20%-35% lower than that of IRI. Additionally, the corresponding hmF2 median errors of GIPHM are 20% to 30% smaller than that of IRI. Furthermore, the ANN models present a good capability to capture the global or regional ionospheric spatial-temporal characteristics, e.g., the equatorial ionization anomaly andWeddell Sea anomaly. The study shows that the ANN-based model has a better agreement to reference value than the IRI model, not only along the Greenwich meridian, but also on a global scale. The approach proposed in this study has the potential to be a new three-dimensional electron density model combined with the inclusion of the upcoming Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) data

    A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network

    Get PDF
    There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde's observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde's data in the polar regions. The differences between ANN-based maps and references show that the d

    Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde

    Get PDF
    The ionosphere plays an important role in satellite navigation, radio communication, and space weather prediction. However, it is still a challenging mission to develop a model with high predictability that captures the horizontal-vertical features of ionospheric electrodynamics. In this study, multiple observations during 2005–2019 from space-borne global navigation satellite system (GNSS) radio occultation (RO) systems (COSMIC and FY-3C) and the Digisonde Global Ionosphere Radio Observatory are utilized to develop a completely global ionospheric three-dimensional electron density model based on an artificial neural network, namely ANN-TDD. The correlation coefficients of the predicted profiles all exceed 0.96 for the training, validation and test datasets, and the minimum root-mean-square error of the predicted residuals is 7.8 × 104 el/cm3. Under quiet space weather, the predicted accuracy of the ANN-TDD is 30%–60% higher than the IRI-2016 at the Millstone Hill and Jicamarca incoherent scatter radars. However, the ANN-TDD is less capable of predicting ionospheric dynamic evolution under severe geomagnetic storms compared to the IRI-2016 with the STORM option activated. Additionally, the ANN-TDD successfully reproduces the large-scale horizontal-v

    Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD

    Get PDF
    OBJECTIVE: We sought to identify motor features that would allow the delineation of individuals with sleep study-confirmed idiopathic REM sleep behavior disorder (iRBD) from controls and Parkinson disease (PD) using a customized smartphone application. METHODS: A total of 334 PD, 104 iRBD, and 84 control participants performed 7 tasks to evaluate voice, balance, gait, finger tapping, reaction time, rest tremor, and postural tremor. Smartphone recordings were collected both in clinic and at home under noncontrolled conditions over several days. All participants underwent detailed parallel in-clinic assessments. Using only the smartphone sensor recordings, we sought to (1) discriminate whether the participant had iRBD or PD and (2) identify which of the above 7 motor tasks were most salient in distinguishing groups. RESULTS: Statistically significant differences based on these 7 tasks were observed between the 3 groups. For the 3 pairwise discriminatory comparisons, (1) controls vs iRBD, (2) controls vs PD, and (3) iRBD vs PD, the mean sensitivity and specificity values ranged from 84.6% to 91.9%. Postural tremor, rest tremor, and voice were the most discriminatory tasks overall, whereas the reaction time was least discriminatory. CONCLUSIONS: Prodromal forms of PD include the sleep disorder iRBD, where subtle motor impairment can be detected using clinician-based rating scales (e.g., Unified Parkinson's Disease Rating Scale), which may lack the sensitivity to detect and track granular change. Consumer grade smartphones can be used to accurately separate not only iRBD from controls but also iRBD from PD participants, providing a growing consensus for the utility of digital biomarkers in early and prodromal PD

    Labelled magnetic reconnection simulation data set

    No full text
    Numerical simulations have been performed on Marconi at CINECA (Italy) under the ISCRA initiative. The corresponding data can be found at: https://doi.org/10.5281/zenodo.393588

    Application of a Multi‐Layer Artificial Neural Network in a 3‐D Global Electron Density Model Using the Long‐Term Observations of COSMIC, Fengyun‐3C, and Digisonde

    No full text
    The ionosphere plays an important role in satellite navigation, radio communication, and space weather prediction. However, it is still a challenging mission to develop a model with high predictability that captures the horizontal-vertical features of ionospheric electrodynamics. In this study, multiple observations during 2005–2019 from space-borne global navigation satellite system (GNSS) radio occultation (RO) systems (COSMIC and FY-3C) and the Digisonde Global Ionosphere Radio Observatory are utilized to develop a completely global ionospheric three-dimensional electron density model based on an artificial neural network, namely ANN-TDD. The correlation coefficients of the predicted profiles all exceed 0.96 for the training, validation and test datasets, and the minimum root-mean-square error of the predicted residuals is 7.8 × 104 el/cm3. Under quiet space weather, the predicted accuracy of the ANN-TDD is 30%–60% higher than the IRI-2016 at the Millstone Hill and Jicamarca incoherent scatter radars. However, the ANN-TDD is less capable of predicting ionospheric dynamic evolution under severe geomagnetic storms compared to the IRI-2016 with the STORM option activated. Additionally, the ANN-TDD successfully reproduces the large-scale horizontal-vertical ionospheric electrodynamic features, including seasonal variation and hemispheric asymmetries. These features agree well with the structure revealed by the RO profiles derived from the FORMOSAT/COSMIC-2 mission. Furthermore, the ANN-TDD successfully captures the prominent regional ionospheric patterns, including the equatorial ionization anomaly, Weddell Sea anomaly and mid-latitude summer nighttime anomaly. The new model is expected to play an important role in the application of GNSS navigation and in the explanation of the physical mechanisms involved

    Code for detecting magnetic reconnection with machine learning methods

    No full text
    The codes and their instructions referring to a journal article titled 'Identifying magnetic reconnection in 2D Hybrid Vlasov Maxwell simulations with Convolutional Neural Networks'
    corecore