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Abstract
Objective
We sought to identify motor features that would allow the delineation of individuals with sleep
study-confirmed idiopathic REM sleep behavior disorder (iRBD) from controls and Parkinson
disease (PD) using a customized smartphone application.

Methods
A total of 334 PD, 104 iRBD, and 84 control participants performed 7 tasks to evaluate voice,
balance, gait, finger tapping, reaction time, rest tremor, and postural tremor. Smartphone
recordings were collected both in clinic and at home under noncontrolled conditions over
several days. All participants underwent detailed parallel in-clinic assessments. Using only the
smartphone sensor recordings, we sought to (1) discriminate whether the participant had iRBD
or PD and (2) identify which of the above 7 motor tasks were most salient in distinguishing
groups.

Results
Statistically significant differences based on these 7 tasks were observed between the 3 groups.
For the 3 pairwise discriminatory comparisons, (1) controls vs iRBD, (2) controls vs PD, and
(3) iRBD vs PD, the mean sensitivity and specificity values ranged from 84.6% to 91.9%.
Postural tremor, rest tremor, and voice were the most discriminatory tasks overall, whereas the
reaction time was least discriminatory.

Conclusions
Prodromal forms of PD include the sleep disorder iRBD, where subtle motor impairment can
be detected using clinician-based rating scales (e.g., Unified Parkinson’s Disease Rating Scale),
which may lack the sensitivity to detect and track granular change. Consumer grade smart-
phones can be used to accurately separate not only iRBD from controls but also iRBD from PD
participants, providing a growing consensus for the utility of digital biomarkers in early and
prodromal PD.
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Polysomnographically confirmed idiopathic REM sleep be-
havior disorder (iRBD) is associated with rates of pheno-
conversion to a neurodegenerative disorder, most often
a synucleinopathy, of up to 91% over a 14-year follow-up
period.1–3 Such individuals therefore offer an enriched pop-
ulation in which to study potential neuroprotective treat-
ments. In otherwise asymptomatic individuals with iRBD, the
detection of subtle motor impairment may portend relatively
imminent conversion to Parkinson disease (PD).4 A major
challenge is the availability of robust outcome measures, re-
sistant to inherent intra- and inter-rater differences associated
with physician-rated scales and placebo/nocebo treatment
effects, that can sensitively measure short-term progression.5,6

With advances in technology has come the hope of delivering
objective measures of disease severity, with multiple measures
permitting the tracking of symptoms over time.7 Several
devices have garnered popularity. Differences in their inter-
faces and calculated measures belie the commonality of their
hardware, which typically comprise integrated accelerometers
and gyroscopes measuring motor impairment.8 Such inertial
measurement units (IMUs) are also integrated into consumer
grade smartphones, increasing in ubiquity worldwide.

We have previously evaluated the feasibility and efficacy of
smartphone use in detecting and monitoring the symptoms of
PD in a pilot study, assessing voice, balance, gait, finger tapping,
and reaction time.9 We now investigate the larger scale use of
smartphones under more realistic clinic- and home-based
conditions to objectively quantify motor symptoms in the
deeply phenotyped Oxford Discovery cohort.4,10 Here, our
aims were to (1) distinguish participants with iRBD from
controls and PD and (2) identify the most salient motor fea-
tures that distinguish between groups.

Methods
Participant selection
Data were collected from participants enrolled in the Oxford
Parkinson’s Disease Centre (OPDC) Discovery study4,10

using smartphone assessments at their clinic visit and then at
home over a maximum of 7 days. A diagnosis of iRBD was
made by a sleep specialist, supported by polysomnography,
concordant with the American Academy of Sleep Medicine
International Classification of Sleep Disorders criteria.11

Individuals with idiopathic PD had a high clinician de-
termined probability (≥90%) of PD, confirmed on their most
recent longitudinal assessment.

Standard protocol approvals, registrations,
and patient consents
The study protocol was approved by the local UK National
Health Service Ethics committee, in adherence with national
legislation and the Declaration of Helsinki. All participants
provided written informed consent at the point of recruitment.

Smartphone test protocol
Details regarding the smartphone test protocol used in this
study have been described previously.9 This prompted par-
ticipants to perform 5 short tasks (less than 5 minutes overall)
to assess: (1) voice, (2) balance, (3) gait, (4) finger tapping,
and (5) reaction time. The smartphone application was
adapted to utilize integrated smartphone IMUs12 to allow 2
additional tasks for tremor (about 45 seconds each) assessing
(6) rest tremor, instructing the user to “sit upright, hold the
phone in your tremor dominant hand and rest it lightly in
your lap, and close your eyes and count backward from 100,”
and (7) postural tremor, instructing the user to “sit upright
and hold the phone in your tremor dominant hand, with the
arm outstretched in front of you” (figure 1). IMU sensor data
were encrypted, timestamped, and uploaded to a secure
online database.

Data preprocessing
Previous studies on objective PD symptom detection have
typically relied on high-quality sensor data collected in
a controlled laboratory environment using expensive hard-
ware (e.g., a double-walled sound booth13,14 and a gait labo-
ratory with cameras and forceplates15). The collection of
sensor recordings under more realistic conditions outside the
laboratory, using consumer-grade smartphones, potentially
makes the protocol in this study practical and scalable for
clinical practice. However, it also results in uncontrolled fac-
tors that may affect the sensor data. To identify and distin-
guish useful from artifactual segments of sensor data, we used
an automated segmentation algorithm. Smartphone record-
ings were included only if all 7 tasks were performed in suc-
cession, with sufficiently similar timestamps. Synchronization
of data based on timestamps allows for the combination of
information from different sensors, thereby facilitating si-
multaneous analyses of all 7 smartphone tasks.

Feature extraction
Voice impairments in PD are typically characterized by
roughness, breathiness, and exaggerated vocal tremor.16 Re-
cently, speech abnormalities have also been demonstrated in
iRBD compared with control participants (sensitivity, 96%;
specificity, 79%).17,18 We calculated a range of features using

Glossary
CV = cross-validation; IMU = inertial measurement unit; iRBD = idiopathic REM sleep behavior disorder; LOO = leave-one-
(recording)-out; LOSO = leave-one-subject-out;MDS = Movement Disorder Society;MDS-UPDRS = Movement Disorders
Society-Unified Parkinson’s Disease Rating Scale; OPDC = Oxford Parkinson’s Disease Centre; PD = Parkinson disease;
UPDRS = Unified Parkinson’s Disease Rating Scale.
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the sustained phonation “aaah” (International phonetic al-
phabet /a:/) based on previous work data available from
Dryad (table e-1, doi.org/10.5061/dryad.3qm0152).13,14,19

Deficits in repetitive finger tapping tasks in PD include has-
tening, faltering, or freezing.20 Using the screen pixel position
(x-y coordinates) and the timing of touch, we extracted 2
categories of summary measures; temporal features and spa-
tial features data available from Dryad (table e-2, doi.org/10.
5061/dryad.3qm0152).

There is no general consensus regarding the existence and
nature of reaction time deficits in PD.21 A selective deficit
in simple reaction time compared with choice reaction
time has been suggested, but findings are dependent on
experimental conditions.21,22 We analyzed noncued simple

reaction time, using the elapsed time between the stimulus
(appearance/disappearance of a screen button) and re-
sponse (press/release of the button), to extract features
based on the descriptive properties of the reaction time data
available from Dryad (table e-3, doi.org/10.5061/dryad.
3qm0152).

Gait and balance deficits in PD are typically characterized by
episodes of freezing of gait, falling, shuffling, progressive loss
of postural reflexes, and festination.23 A recent study dem-
onstrated that rest and postural tremor can be used to dis-
criminate PD from controls and PD from essential tremor.12

In this study, for the 4 IMU-based tasks, namely balance, gait,
rest tremor, and postural tremor, we extracted 5 categories of
summary measures data available from Dryad (table e-4, doi.
org/10.5061/dryad.3qm0152).

Figure 1 Schematic diagram illustrating themajor steps involved in data acquisition of 7 smartphone tasks assessing voice,
balance, gait, finger tapping, reaction time, rest tremor, and postural tremor

For the voice task, using the inbuiltmicrophone, we recorded the sustained phonation “aaah”; the participants were instructed to “Hold the phone to your ear,
take a deep breath, and say “aaah” at a comfortable and steady, tone and level, for as long as you can.” For the balance task, using the smartphone inertial
measurement units (IMUs), we collected triaxial accelerometer sensor data; the participants were instructed to “Stand up straight and place the phone in your
pocket. When the buzzer vibrates, stay standing until the buzzer vibrates again.” For the gait task, using the smartphone IMUs, we collected triaxial
accelerometer sensor data; the participants were instructed to “Stand up and place the phone in your pocket. When the buzzer vibrates, walk forward 20
yards. Then, stop, turn around, andwalk back again.” For the finger tapping task, using the touch screen sensors and timer, we recorded time and location (x-y
screen coordinate position) of finger touch; the participants were instructed to “Tap the buttons below with the index and middle fingers of 1 hand
alternatively, in a regular rhythm.” For the reaction time task, using the touch screen sensors and timer, we recorded the time of stimulus onset (appearance/
disappearance of a screen button) and response (press/release the screen button) along with location (x-y screen coordinate position) of finger touch; the
participants were instructed to “Press the screen button below as soon as it appears; release as soon as it disappears.” For the rest tremor task, using the
smartphone IMUs, we collected triaxial accelerometer sensor data; the participants were instructed to “Sit upright, hold the phone in your tremor dominant
hand and rest it lightly in your lap, and close your eyes and count backward from 100.” For the postural tremor task, using the smartphone IMUs, we collected
triaxial accelerometer sensor data; the participants were instructed to “Sit upright and hold the phone in your tremor dominant hand, with the arm
outstretched in front of you.”

e1530 Neurology | Volume 91, Number 16 | October 16, 2018 Neurology.org/N

https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
http://neurology.org/n


Feature selection
Identification of the most salient features having the highest
discriminatory power was undertaken using different feature
selection algorithms. Feature selection enhances the explan-
atory power of the analysis by removing redundant and less
informative features, which helps reduce the complexity of the
discriminatory analysis. Five different feature selection algo-
rithms were used. This resulted in 5 different rankings, 1 from
each algorithm. Majority voting was used to derive a single
unified ranking to be used for inference and discrimination.24

Combining outputs from different algorithms can improve
the reliability of feature rankings, as multiple algorithms tend
to reduce the potential variability associated with using an
individual technique.25

Statistical analysis
Three pairwise discriminatory comparisons were considered:
(1) controls vs iRBD, (2) controls vs PD, and (3) iRBD vs
PD. Statistical model predictions were compared with clini-
cians’ assessments, which were treated as the ground truth.
Statistical analysis was aimed at (1) objective quantification of
motor symptoms using the sensor data, (2) identification of
the most salient features that help discriminate the 3 groups,
and (3) assessment of the discrimination accuracy (sensitivity
and specificity) for the respective pairwise comparisons. To
assess and quantify motor symptoms, we extracted a range of
summary measures (features) to characterize the symptom-
relevant properties of the sensor data. Contrasting with pre-
vious studies that have typically focused on assessing 1 motor
symptom in PD, statistical analyses in this study were based
on the acquisition, quantification, and analysis of 7 different
motor characteristics.

Internal validation
To discriminate the 3 contrast groups, we used a statistical
machine learning method (random forests), which is com-
monly used to separate generic data into several classes.26 To
validate the method, we used randomized cross-validation
(CV). CV helps assess the generalizability of a model to
similar previously unseen data sets. CV involves repetitive
splitting of the data into nonoverlapping “training” and “val-
idation” sets. The training data are used to find discriminatory
patterns in the features. The validation set is used to assess the
method’s discrimination accuracy; effectively, the random
forest classifier is blinded to these data during training.

We used 3 different CV methods: (1) 10-fold CV, (2) leave-
one-subject-out (LOSO), and (3) leave-one-(recording)-out
(LOO). Validation based on 10-fold CV has been commonly
used in other studies.13,14,19 The data are split such that 90%
of randomly selected recordings are used for training, whereas
the remaining 10% are used for validation. LOSOCV involves
splitting the data such that all recordings from only 1 ran-
domly selected participant are used in the validation set,
whereas recordings from all remaining participants are used
for training. LOO CV uses 1 randomly selected recording for
validation, whereas all remaining recordings are used for

training. A single recording (comprising each of the 7 tasks)
was used for each participant. To account for differences in
group sample sizes, an equal number of recordings were
randomly selected before training and validation from the
groups being compared at each CV repetition. Data available
from Dryad (additional methods, doi.org/10.5061/dryad.
3qm0152) show further details on feature extraction, feature
selection, data imputation, and CV.

To gauge the association between the accuracy and number of
features, validation was undertaken using different numbers of
the most salient features. Accuracy was quantified using sen-
sitivity and specificity. Discrimination accuracies were com-
puted separately at each CV iteration and summarized using
mean and SD. To account for potential differences in sex,
sensitivity and specificity were computed separately for all
recordings, only female recordings, and only male recordings.

Significance was set at 5% (unless otherwise stated), and
hypothesis tests were 2 sided. Statistical analysis was per-
formed using Matlab software (version 2016b). The overall
analysis steps are illustrated in figure 2.

Data availability
The OPDC have a Data Access Committee whose function is
to promote scientific collaboration and maximize the benefit
of our research for the wider community. Individual deiden-
tified participant data can be made available via a formal ap-
plication process to the OPDC Data Access Committee by
any qualified investigator, as outlined in our web site: opdc.
medsci.ox.ac.uk/external-collaborations, which contains the
application form, protocol, and terms and conditions.

Results
The demographic characteristics of the participants are shown
in table 1. As expected, iRBD participants were younger and
more likely to be men. Other clinical differences were evident,
associated with disease status. Control, iRBD, and PD partic-
ipants contributed on average 9.5, 13.1, and 8.2 recordings
(each comprising all 7 tasks), respectively. For each of the 7
tasks, this resulted in a total of 799 control, 1,358 iRBD, and
2,734 PD recordings (table 2). From the 7 tasks, a total of 998
summary features were extracted. Using all 998 features, the
mean sensitivity and specificity values ranged from 84.6% (SD
4.1%) to 91.9% (SD 3.5%) and 88.3% (SD 3.3%) to 90.1% (SD
2.7%), respectively, for all 3 pairwise comparisons (table 2).

As expected, the sensitivity and specificity values increased as
more features were incorporated (figure 3). Accuracies
obtained using the 30 most salient features were broadly
comparable with the corresponding sensitivity and specificity
values obtained using all 998 features. The increase in dis-
crimination accuracy for sex-specific subgroup analyses is
provided in data available from Dryad (figures e-1 and e-2,
doi.org/10.5061/dryad.3qm0152), which show that the sex-
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specific results are in overall agreement with accuracies
obtained using all available recordings (figure 3).

Using only the 30 top-ranked features, the mean sensitivity
andmean specificity was (1) 89.5% (SD 3.5%) and 85.3% (SD
3.7%) in discriminating controls from iRBD, (2) 83.4% (SD
3.5%) and 87.5% (SD 2.8%) in discriminating iRBD from PD,
and (3) 81.7% (SD 4.0%) and 85.8% (SD 3.8%) in discrim-
inating PD recordings from controls, where male and female
participants were combined across groups. All sensitivity and
specificity results were significantly better than comparable
results obtained using completely randomized predictions (p
< 0.001, 2-sided Kolmogorov-Smirnov test). See data avail-
able from Dryad (tables e-5 to e-7, doi.org/10.5061/dryad.
3qm0152) for details regarding the most salient features.

Using only a single recording (comprising all 7 tasks that were
performed for the very first time) for each participant, the
LOO CV accuracy in discriminating PD participants from
controls was slightly higher compared with the other 2 group
comparisons (controls vs iRBD and iRBD vs PD; data avail-
able fromDryad, table e-8, doi.org/10.5061/dryad.3qm0152).
Using only the 30 most salient features for each pairwise
comparison, the mean discrimination accuracy using the
LOSO CV scheme (using all recordings by a given participant
over time) for the 3 pairwise comparisons was around
70%–75% (data available from Dryad, table e-9, doi.org/10.
5061/dryad.3qm0152). The accuracies obtained using all
recordings for the 3 validation schemes were significantly
better than comparable results obtained using completely
randomized predictions. Percentage mismatch in the features

Figure 2 Schematic diagram illustrating the major steps involved in the analysis of smartphone sensor data from 7
smartphone tasks assessing voice, balance, gait, finger tapping, reaction time, rest tremor, and postural tremor
in the smartphone app used in this study

GSO = Gram-Schmidt orthogonaliza-
tion; LASSO = least absolute shrinkage
and selection operator; LLBFS = local
learning-based feature selection;
mRMR = minimum redundancy maxi-
mum relevance; PD = Parkinson dis-
ease; iRBD = idiopathic REM sleep
behavior disorder; VFER = vocal fold
excitation ratio.
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of training and validation datasets using the 10-fold CV and
LOSO CV schemes is also provided (data available from
Dryad, figures e-3 and e-4, doi.org/10.5061/dryad.3qm0152);
unfortunately, LOSOCVmismatch was too large for this form
of validation to be considered statistically reliable.

Voice was the most discriminatory factor between iRBD and
controls, by sex and overall, constituting approximately 50%
of the most salient features (figure 4, D–F). A preponderance
of gait-related features is evident in female iRBD participants,
but conclusions that may be drawn are limited by the small
numbers recruited.

Postural and rest tremor were the second most salient factors
in discriminating iRBD and controls. Features derived from
tasks assessing tremor were the major discriminant between
PD and controls and PD and iRBD, accounting for 60% and
57% of the 30 top features, respectively (figure 4, A and G).
This is broadly consistent with motor phenotyping in other
early PD cohorts using the Movement Disorders Society-
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) to
separate into motor phenotype,27,28 revealing 72% with
tremor-dominant PD (this figure was calculated using only
the MDS-UPDRS scores; for details, see Stebbins et al.28).
Voice was the third most discriminatory factor between PD
and controls and the second most salient distinguishing task
between iRBD and PD. Reflected in MDS-UPDRS III, indi-
viduals with iRBD and controls were more similar to each
other than PD in terms of motor symptoms. As expected, task
rankings for the comparisons of PD vs controls and PD vs
iRBD were also similarly comparable (figure 4).

Across different pairwise comparisons, noncued reaction time
was one of the least useful tasks overall in discriminating
between groups, in keeping with previous reports of signifi-
cant deficits in reaction time among PD participants under
cued but not noncued conditions.29 In-clinic observations
noticed that participants had different levels of engagement
with the reaction time task, with some finding it challenging to
perform the task as per the instructions at the start.

Discussion
We report the results of smartphone assessments in one of the
largest cohorts of deeply phenotyped participants with iRBD,
PD and controls, demonstrating that objective quantification
of motor symptoms using smartphones can be used to dis-
criminate between participant groups with a high level of
accuracy (84.6%–91.9% mean sensitivity and specificity). We
were able to generate a comparable level of accuracy using the
top-ranked 30 of the total 998 derived features. The perfor-
mance characteristics were similar for men and women. Per-
haps surprisingly, these smartphone sensor data performed
equally as well for the iRBD to control comparison as it did for

Table 1 Demographic and clinical data for controls and
participants with idiopathic RBD and PD

Controls iRBD PD

N = 84 N = 104 N = 334

Age 66.3 (9.1) 64.5 (9.4) 66.1 (9.0)

Sex, male (%) 56 (67) 91 (88) 209 (63)

Hoehn & Yahr 0.0 (0.2) 0.1 (0.4) 1.8 (0.5)

MDS-UPDRS part III 1.9 (2.4) 4.4 (4.2) 25.3 (10.4)

RBDSQ 2.4 (2.1) 9.9 (2.7) 4.6 (3.2)

BDI 5.7 (6.0) 9.9 (9.5) 8.3 (6.4)

MMSE 28.5 (1.5) 26.9 (4.2) 27.6 (3.0)

MoCA 26.9 (2.2) 25.5 (2.6) 25.2 (3.7)

Abbreviations: BDI = Beck Depression Inventory; iRBD = idiopathic REM
sleep behavior disorder; MDS-UPDRSIII = Movement Disorder Society-Uni-
fied Parkinson’s Disease Rating Scale part III; MMSE = Mini-Mental State
Examination; MoCA = Montreal Cognitive Assessment; PD = Parkinson dis-
ease; RBDSQ = REM Sleep Behavior Disorder Screening Questionnaire.
Values are mean (SD) unless otherwise stated.
Note: of those with PD, 72% were tremor dominant, 19% exhibited postural
instability and gait disorders (PIGDs), whereas remaining 9% were in-
determinate (these figureswere computedusing only theMDS-UPDRS scores).

Table 2 Discrimination accuracy for the 3 pairwise
comparisons

Analysis using sensor data
from all available recordings

No. of recordings N (All) N (Female) N (Male)

Controls 799 272 527

iRBD 1,358 240 1,118

PD 2,734 1,045 1,689

Discrimination accuracy Sensitivity (%) Specificity (%)

Controls vs PD (All) 84.6% (4.1%) 88.3% (3.3%)

Controls vs PD (Female) 91.1% (7.3%) 93.5% (4.8%)

Controls vs PD (Male) 87.8% (4.3%) 87.1% (5.0%)

Controls vs iRBD (All) 91.9% (3.5%) 90.0% (3.7%)

Controls vs iRBD (Female) 96.0% (3.7%) 98.5% (2.5%)

Controls vs iRBD (Male) 90.1% (4.1%) 86.9% (4.7%)

iRBD vs PD (All) 87.5% (2.8%) 90.1% (2.7%)

iRBD vs PD (Female) 92.9% (6.1%) 93.3% (5.8%)

iRBD vs PD (Male) 85.7% (3.7%) 90.1% (2.7%)

Abbreviations: iRBD = idiopathic REM sleep behavior disorder; PD = Par-
kinson disease.
For each pairwise comparison, accuracies are reported using all available
recordings (denoted by All), along with subgroup analysis performed using
pooling of recordings based on sex (denoted by Female and Male). Sensi-
tivity and specificity values (in %) are reported as mean (SD). For the 3
pairwise comparisons: (1) controls vs PD, (2) controls vs iRBD, and (3) iRBD vs
PD; the true positive corresponds to correct detection of (1) PD, (2) iRBD, and
(3) PD, whereas the true negative related to the correct identification of (1)
controls, (2) controls, and (3) iRBD, respectively.
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the PD to control comparison, although clinically PD par-
ticipants generally have far more pronounced motor features
than prodromal iRBD participants.

Of note, after voice, we found that postural and rest tremor
were salient factors in discriminating iRBD from controls. This
may be surprising to many sleep specialists; however, mild or
intermittent postural tremor signs and symptoms may not be
clinically evident during outpatient review and infrequent
MDS-UPDRS rating. Moreover, a retrospective study looking
at prediagnostic presentations of PD in primary care compared
8,166 PD with 46,755 non-PD cases and found that 5 and 10
years before PD diagnosis, self or general practitioner-reported
tremor incidence was significantly higher in those who went on
to develop PD (relative risk 7.59).30 Reported tremor was
therefore a strong predictor of future PD conversion in the
general population, whereas iRBD was not, possibly because
general physicians and their patients are not wholly aware of
iRBD as a diagnostic entity. As an estimated two-thirds of
prodromal iRBD participants go on to develop PD or De-
mentia with Lewy Bodies, we may have detected subtle in-
termittent postural tremor in iRBD participants with greater
sensitivity due to repeated measures using smartphone-based
accelerometry. Longitudinal evaluation will enable us to

determine whether tremor may subsequently manifest clini-
cally or indeed herald conversion to PD in iRBD participants.

Voice was the most discriminatory factor between iRBD and
controls, constituting approximately 50% of the most salient
features. These results are consistent with recent studies that
have reported vocal abnormalities in individuals with idio-
pathic iRBD.17,18

To assess the reliability and robustness of these findings, a de-
tailed and comprehensive validation of the methodology was
undertaken based on (1) evaluation using different CV strat-
egies, (2) analysis of all recordings, along with sex-specific
subgroup analyses, (3) classification evaluation using different
validation strategies (single and multiple recordings per in-
dividual), (4) computation of classification accuracies for dif-
ferent numbers of input features, and (5) identification of the
most discriminatorymotor tasks between groups. Applying this
methodology, we are confident that we have effectively ruled
out all major potential confounds in our data set.

Our estimated discrimination accuracies are obtained under
realistic, nonlaboratory settings, e.g., in busy outpatient clinic
rooms or the home environment. Studies to date have mostly

Figure 3 Discrimination accuracies as a function of the number of salient features used in the machine learning dis-
crimination analysis, for the 3 pairwise comparisons: controls vs Parkinson disease (PD) (panels A andB), controls
vs idiopathic REM sleep behavior disorder (iRBD) (panels C and D), and iRBD vs PD (panels E and F)

The above accuracies were computed
using all available recordings from the
3 clinical groups, using all 998 features
computed from the 7 tasks, using 10-
fold cross-validation (10 repetitions).
The rankings of the most salient fea-
tures were obtained using a majority
voting scheme (using 5 feature selec-
tion algorithms). The feature rankings
were obtained separately for each of
the above 3 pairwise comparisons.
Featureswere added into themachine
learning classifier (random forest) in
increments of 2 (starting from 2 and
going up to 30), whereby higher
ranked features were added first. The
whole process of training and valida-
tion was repeated each time 2 new
features were included. Sensitivity
and specificity values (in %) were
reported as mean (denoted by gray
circles) and SD (vertical bars).
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focused on the collection of data in controlled environments
under direct supervision.18,31,32 In a recent systematic review
of new methods for the assessment of PD,33 87% of studies
were conducted in a controlled clinic or laboratory setting. To
date, those collecting smartphone data in the home envi-
ronment have typically focused on either upper or lower limb
tests of motor function or have incorporated home visits into
the study protocol to improve adherence.34,35

A reduction in data quality is inevitable when performing
studies outside controlled laboratory conditions. Previous
studies have reported accuracies of approximately 99% in
discriminating PD from controls using features of voice alone
based on lab-quality recordings14; as anticipated, it was not
possible to replicate this same high level of discrimination
accuracy here. Instead, integrating features across multiple
tasks allows us to offset the reduction in voice data quality and
thereby discriminate groups with large effect sizes.

Female participants with iRBD were poorly represented in
this study, limiting the inferences it is possible to draw from

their inclusion, yet reflecting the established male pre-
ponderance in sleep clinic ascertained iRBD cases. Although
fewer in number, each female iRBD participant contributed
a greater number of recordings compared with their male
counterparts (mean 18.5 vs 12.3). However, subgroup anal-
yses of pooled recordings by sex demonstrated effective dis-
crimination accuracies using multiple recordings per
participant.

Another potential source of error arises from the possibility of
sampling bias within the PD group. Although participants
were asked to perform smartphone assessments over a 7-day
period at home, up to 4 times a day, it is possible that we
captured data from individuals with more optimally con-
trolled PD and/or with assessments less likely to be per-
formed during “OFF” periods. This could have potentially
reduced the magnitude of the observed effect sizes that would
otherwise be seen. In the absence of independent ground
truth data (e.g., video camera and self-reported diary), it was
not possible to gauge the level of adherence to the test pro-
tocol. For balance and gait tasks, variations in phone

Figure 4 Graphical illustration of the most salient discriminatory tasks for the 3 pairwise comparisons: controls vs Par-
kinson disease (PD) (charts A–C, top horizontal panel), controls vs idiopathic REM sleep behavior disorder (iRBD)
(charts D–F, middle horizontal panel), and iRBD vs PD (charts G–I, lower horizontal panel)

The above pie charts were generated using the 30 most salient features computed from the smartphone sensor recordings. The rankings of the most
discriminatory features were obtained using a majority voting scheme (using 5 feature selection algorithms). The feature rankings were obtained separately
for each of the above 9 pairwise comparisons. For a given pairwise comparison, charts were generated by computing the percentage of features that were
selected for each of the 7 smartphone tasks. A larger pie segment corresponds to smartphone tasks that were identified as being relatively more discrim-
inatory for the pairwise comparison under consideration. For each comparison, task rankings were computed using all available recordings (denoted by All,
leftmost vertical panel), along with a subgroup analysis performed using pooling of observations for females and males, denoted by Female (middle vertical
panel) and Male (rightmost vertical panel), respectively.
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placement could have confounded the accelerometer
recordings because of multiple known and unknown factors
such as pocket size, phone orientation, and phone placement
location.

The choice of features extracted in this study was also naturally
limited by the single device used for data collection. Studies
have used multiple sensors and cameras for data acquisition to
compute detailed kinematic gait and balance features.15 Using
only a single smartphone accelerometer sensor signal, it was
not possible to reliably calculate and validate these detailed
features. Nevertheless, it is encouraging that even given the
fairly free study protocol, differences between groups were
sufficient to discriminate with large effect sizes.

One of the potential pitfalls of sophisticated machine learning
algorithms including those used in this study36 is that high
discrimination accuracy does not necessarily translate into
high explanatory power. Some of the features we used to help
characterize the sensor data weremathematically complex and
are not straightforward to interpret from a clinical or etiologic
standpoint. The rankings of the most salient features can vary
depending on the choice of feature selection algorithm, each
scoring the importance of features based on the specific and
unique criterion. The sophisticated machine learning algo-
rithms used here can inadvertently make predictions based on
factors unrelated to clinical grouping such as factors related to
the identity of participants or sex (as opposed to their clinical
status), but the evidence rules out these particular confounds
being present in this case (data available from Dryad, addi-
tional methods, doi.org/10.5061/dryad.3qm0152). Different
CV methods may detect such effects to a certain extent, but it
is not possible to precisely quantify the influence of all un-
known confounders because of the high complexity of these
machine learning methods.37 Here, we found that LOSO CV
discriminatory accuracy was much lower than 10-fold CV
(data available from Dryad, table e-9, doi.org/10.5061/dryad.
3qm0152), but the mismatch between train and validation set
distributions was too large for LOSO CV to be statistically
reliable in this case (data available from Dryad, figure e-4, doi.
org/10.5061/dryad.3qm0152).

As with all reported studies to date involving the use of
wearable technology/smartphones to obtain metrics of dis-
ease progression, this study takes the clinician’s diagnosis as
ground truth, with participants in the PD group judged to
have ≥90% probability of PD at their last visit. However, it
needs to be remembered that although positive predictive
values of up to 99% have been reported in a tertiary specialist
movement disorder unit,38 accuracies vary, and up to 25% of
individuals diagnosed with PD in life may be found to have an
alternative diagnosis at death should they proceed to neuro-
pathologic examination.39 It is with this in mind that the
importance of studies involving the follow-through of deeply
phenotyped participants with iRBD and PD to autopsy can-
not be underestimated to fully realize the potential of objec-
tive data from wearable sensors.

Our initial findings are highly promising, but further re-
finement of the algorithms is required in terms of external
replication. In addition, it would be valuable to include other
parkinsonian and tremulous conditions as comparators, which
may be more difficult to differentiate from PD. Therefore,
from a clinical perspective, we may have overestimated the
diagnostic utilities of our extracted features because of
“spectrum bias,” although this is less of an issue for the iRBD
control comparison. We also aim to derive quantitative
measures that can be compared against clinician-assigned
measures of disease severity, namely the MDS-UPDRS to
monitor disease progression. Home-based testing would al-
low a more comprehensive assessment of a participant’s
condition through repeated measures over several days, as
opposed to the current reliance on infrequent and single time
point assessments captured in clinic, which are subject to
many confounds. The use of fully automated methodology,
which we intend to make entirely open access, will further
facilitate replication and should make this an ideal marker for
use in clinical trials.

Objective measures of motor symptom severity would also be
of direct benefit in optimizing treatment strategies in complex
disease, including the use of apomorphine, deep brain stim-
ulation, and Duodopa therapies. This would empower people
with PD to effectively self-manage their symptoms remotely at
home, allowing titrations to be made directly according to
medication response. Such a collaborative approach to long-
term disease management may help to address the increasing
demands on health care services from an aging population at
an ever-increasing risk of neurodegenerative diseases in-
cluding Parkinson disease.

This study uniquely demonstrates the use of consumer-grade
smartphones to capture real-world data capable of dis-
tinguishing a large number of 522 PD, iRBD, and control
participants with 84.6%–91.9% sensitivity and 88.3%–90.1%
specificity. We continue to work toward the ultimate goal of
developing the tools to allow the reliable and sensitive
quantification of changes in disease severity over time, thereby
facilitating individual-level stratification of prodromal and
early PD participants to allow the identification of at-risk
individuals and track response to future critically needed
neuroprotective therapies.

Author contributions
Research project: conception—R. Wade-Martins, Y. Ben-
Shlomo, M.A. Little, and M.T. Hu; organization—R. Wade-
Martins, Y. Ben-Shlomo, M.A. Little, and M.T. Hu; protocol
design—F. Baig, Y. Ben-Shlomo, M.A. Lawton, and M.T. Hu.
Smartphone specialized software: design—A. Zhan and M.A.
Little; implementation—A. Zhan and M.A. Little. Data ac-
quisition: protocol design—M.A. Little and M.T. Hu; pro-
tocol documentation—S. Arora, F. Baig, J. Rumbold, and
A. Louvel; data collection—F. Baig, C. Lo, T.R. Barber, A.
Zhan, C. Ruffmann, J.C. Klein, J. Rumbold, A. Louvel, Z.
Zaiwalla, G. Lennox, T. Quinnell, G. Dennis, and M.T. Hu;

e1536 Neurology | Volume 91, Number 16 | October 16, 2018 Neurology.org/N

https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
https://doi.org/10.5061/dryad.3qm0152
http://neurology.org/n


smartphone database maintenance—A. Zhan; clinical data-
base maintenance—M.A. Lawton. Statistical analysis:
design—S. Arora and M.A. Little; execution—S. Arora and
M.A. Little; review and critique—S. Arora, Y. Ben-Shlomo,
M.A. Little, and M.T. Hu. Manuscript preparation: writing of
the first draft—S. Arora, C. Lo, M.A. Little, and M.T. Hu;
review, critique, and revision—S. Arora, F. Baig, C. Lo, T.R.
Barber, M.A. Lawton, A. Zhan, M. Rolinski, C. Ruffmann, J.C.
Klein, J. Rumbold, A. Louvel, Z. Zaiwalla, G. Lennox, T.
Quinnell, G. Dennis, R. Wade-Martins, Y. Ben-Shlomo, M.A.
Little, and M.T. Hu.

Acknowledgments
The authors extend their sincere gratitude to all the
participants who took part in this study and made this
research possible. They are grateful to Parkinson’s UK for
funding this project. They also thank the hospital staff who
assisted with in clinic data collection.

Study funding
This study was funded by the Monument Trust Discovery
Award from Parkinson’s UK and supported by the National
Institute for Health Research (NIHR) Oxford Biomedical
Research Centre based at Oxford University Hospitals NHS
Trust and University of Oxford, and the Dementias and
Neurodegenerative Diseases Research Network (DeN-
DRoN). The views expressed are those of the author(s) and
not necessarily those of the NHS, the NIHR, or the De-
partment of Health. The funding agency had no role in the
design and conduct of the study; collection, management,
analysis, or interpretation of the data; preparation, review, or
approval of the manuscript; or decision to submit the man-
uscript for publication. This work was supported by Parkin-
son’s UK [grant number J-1403]. This study was funded by
the Monument Trust Discovery Award from Parkinson’s UK
and supported by the National Institute for Health Research
(NIHR) Oxford Biomedical Research Center (BRC). The
views expressed are those of the author(s) and not necessarily
those of the NHS, the NIHR, or the Department of Health.

Disclosure
S. Arora has been employed by the University of Oxford and
has been previously funded by Parkinson’s UK. F. Baig has
been employed by Nottingham University Hospitals NHS
Trust. C. Lo has been employed by the NIHR Biomedical
Research Center based at Oxford University Hospitals NHS
Trust and the University of Oxford. T. Barber has received
a Biomedical Research Centre/NIHR Career Development
Fellowship and Wellcome Trust Doctoral Training Fellow-
ship. M.A. Lawton has been employed by the University of
Bristol and funded by grants awarded to the OPDC by Par-
kinson’s UK. A. Zhan is funded by the Department of
Computer Science, Johns Hopkins University. M. Rolinski
has been funded by the NIHR. C. Ruffmann has been
employed by the OPDC at the University of Oxford. J.C.
Klein has been funded by the NIHR and theMonument Trust
Discovery Award from Parkinson’s UK. J. Rumbold has been

employed by Oxford University Hospitals NHS Trust. A.
Louvel has been employed by Oxford University Hospitals
NHS Trust. Z. Zaiwalla has been employed by Oxford Uni-
versity Hospitals NHS Trust. G. Lennox has been employed
by Oxford University Hospitals NHS Trust. T. Quinnell has
been employed by Papworth Hospital NHS Foundation
Trust and has received an educational grant from UCB. G.
Dennis has been employed by Sheffield Teaching Hospitals
NHS Foundation Trust, UK, and has received education
grants from Bial and UCB. R. Wade-Martins has been funded
by the Monument Trust Award from Parkinson’s UK,
Dementias Platform UK, Medical Research Council, Mission
Therapeutics, Michael J Fox Foundation, Alzheimer’s Re-
search UK, Motor Neuron Disease Association, Pfizer, Ataxia
UK, Friedreich’s Ataxia Research Alliance, European Union
Innovative Medicines Initiative, and UCB Pharma. Y. Ben-
Shlomo was employed by the University of Bristol and re-
ceived research funding from Parkinson’s United Kingdom,
ESRC/NIA, NIHR, Medical Research Council, and the Brain
Tumour Charity. Y. Ben-Shlomo was employed by the Uni-
versity of Bristol and has been funded by Kidney research UK,
Medical Research Council, NIHR HTA, Parkinson’s UK, and
the Brain tumour charity. M.A. Little has been funded by
Parkinson’s UK, Radboud UMC/UBC, NIH, and The Mi-
chael J Fox Foundation. M.T. Hu received funding from
Biogen (Advisory Capacity), the Monument Trust Award
from Parkinson’s UK, and the NIHR Oxford Biomedical
Research Center based at Oxford University Hospitals NHS
Trust and the University of Oxford. Go to Neurology.org/N
for full disclosures.

Publication history
Received by Neurology April 30, 2018. Accepted in final form
July 12, 2018.

References
1. Iranzo A, Fernandez-Arcos A, Tolosa E, et al.. Neurodegenerative disorder risk in idi-

opathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014;9:e89741.
2. Postuma RB, Gagnon JF, Bertrand JA, Genier Marchand D,Montplaisir JY. Parkinson

risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials.
Neurology 2015;84:1104–1113.

3. Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian
disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye
movement sleep behavior disorder: a 16-year update on a previously reported series.
Sleep Med 2013;14:744–748.

4. Barber TR, Lawton M, Rolinski M, et al. Prodromal Parkinsonism and neurode-
generative risk stratification in REM sleep behaviour disorder. Sleep 2017;40.

5. Athauda D, Foltynie T. The ongoing pursuit of neuroprotective therapies in Par-
kinson disease. Nat Rev Neurol 2015;11:25–40.

6. Post B,MerkusMP, de Bie RMA, de Haan RJ, Speelman JD. Unified Parkinson’s disease
rating scale motor examination: are ratings of nurses, residents in neurology, and
movement disorders specialists interchangeable? Mov Disord 2005;20:1577–1584.

7. Godinho C, Domingos J, Cunha G, et al. A systematic review of the characteristics and
validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil
2016;13:24.

8. Oung QW, Muthusamy H, Lee HL, et al Technologies for assessment of motor
disorders in Parkinson’s disease: a review. Sensors (Basel) 2015;15:21710–21745.

9. Arora S, Venkataraman V, Zhan A, et al. Detecting and monitoring the symptoms of
Parkinson’s disease using smartphones: a pilot study. Parkinsonism Relat Disord
2015;21:650–653.

10. LawtonM,Baig F, RolinskiM, et al Parkinson’s disease subtypes in theOxford Parkinson
disease Centre (OPDC) discovery cohort. J Parkinsons Dis 2015;5:269–279.

11. International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy
of Sleep Medicine; 2014.
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