29,586 research outputs found

    Similarity laws of lunar and terrestrial volcanic flows

    Get PDF
    A mathematical model of a one dimensional, steady duct flow of a mixture of a gas and small solid particles (rock) was analyzed and applied to the lunar and the terrestrial volcanic flows under geometrically and dynamically similar conditions. Numerical results for the equilibrium two phase flows of lunar and terrestrial volcanoes under similar conditions are presented. The study indicates that: (1) the lunar crater is much larger than the corresponding terrestrial crater; (2) the exit velocity from the lunar volcanic flow may be higher than the lunar escape velocity but the exit velocity of terrestrial volcanic flow is much less than that of the lunar case; and (3) the thermal effects on the lunar volcanic flow are much larger than those of the terrestrial case

    Fluctuation Effects in High Sheet Resistance Superconducting Films

    Full text link
    As the normal state sheet resistance, RnR_n, of a thin film superconductor increases, its superconducting properties degrade. For Rnh/4e2R_n\simeq h/4e^2 superconductivity disappears and a transition to a nonsuperconducting state occurs. We present electron tunneling and transport measurements on ultrathin, homogeneously disordered superconducting films in the vicinity of this transition. The data provide strong evidence that fluctuations in the amplitude of the superconducting order parameter dominate the tunneling density of states and the resistive transitions in this regime. We briefly discuss possible sources of these amplitude fluctuation effects. We also describe how the data suggest a novel picture of the superconductor to nonsuperconductor transition in homogeneous 2D systems.Comment: 11 pages, 5 figure

    Evaluation of innovative sprayed-concrete-lined tunnelling

    Get PDF
    The front-shunt tunnel was the first tunnel of the Terminal 5 project at Heathrow to be constructed, and was the first section of sprayed-concrete-lined (SCL) tunnel to be constructed using the method known as LaserShell. This innovation represented a significant deviation from the methods previously used in SCL construction. Therefore it was subjected to a careful examination before and during construction using sophisticated 3D numerical modelling and monitoring during construction. The paper presents typical results from surface settlement levelling, inclinometers and extensometers, pressure cells and tunnel lining displacement measurements, and comments on the performance of the methods and instruments used. The paper then presents the methodology and typical results of the numerical modelling, and shows that the predictions of displacements and stresses compared well with the field measurements. In terms of the control of ground deformations and structural safety the tunnel performed well

    Quantitative Precipitation Nowcasting: A Lagrangian Pixel-Based Approach

    Get PDF
    Short-term high-resolution precipitation forecasting has important implications for navigation, flood forecasting, and other hydrological and meteorological concerns. This article introduces a pixel-based algorithm for Short-term Quantitative Precipitation Forecasting (SQPF) using radar-based rainfall data. The proposed algorithm called Pixel- Based Nowcasting (PBN) tracks severe storms with a hierarchical mesh-tracking algorithm to capture storm advection in space and time at high resolution from radar imagers. The extracted advection field is then extended to nowcast the rainfall field in the next 3. hr based on a pixel-based Lagrangian dynamic model. The proposed algorithm is compared with two other nowcasting algorithms (WCN: Watershed-Clustering Nowcasting and PER: PERsistency) for ten thunderstorm events over the conterminous United States. Object-based verification metric and traditional statistics have been used to evaluate the performance of the proposed algorithm. It is shown that the proposed algorithm is superior over comparison algorithms and is effective in tracking and predicting severe storm events for the next few hours. © 2012 Elsevier B.V

    Temporal expectancies driven by self- and externally generated rhythms

    Get PDF
    The dynamic attending theory proposes that rhythms entrain periodic fluctuations of attention which modulate the gain of sensory input. However, temporal expectancies can also be driven by the mere passage of time (foreperiod effect). It is currently unknown how these two types of temporal expectancy relate to each other, i.e. whether they work in parallel and have distinguishable neural signatures. The current research addresses this issue. Participants either tapped a 1Hz rhythm (active task) or were passively presented with the same rhythm using tactile stimulators (passive task). Based on this rhythm an auditory target was then presented early, in synchrony, or late. Behavioural results were in line with the dynamic attending theory as RTs were faster for in- compared to out-of-synchrony targets. Electrophysiological results suggested self-generated and externally induced rhythms to entrain neural oscillations in the delta frequency band. Auditory ERPs showed evidence of two distinct temporal expectancy processes. Both tasks demonstrated a pattern which followed a linear foreperiod effect. In the active task, however, we also observed an ERP effect consistent with the dynamic attending theory. This study shows that temporal expectancies generated by a rhythm and expectancy generated by the mere passage of time can work in parallel and sheds light on how these mechanisms are implemented in the brain

    Optimal logistics planning for modular construction using two-stage stochastic programming

    Get PDF
    The construction sector is currently undergoing a shift from stick-built construction to modular building systems that take advantage of modern prefabrication techniques. Long established in-situ construction practices are thus being replaced by processes imported from the manufacturing sector, where component fabrication takes place within a factory environment. As a result of this transformation, current construction supply chains, which have focused on the delivery of raw materials to sites, are no longer apt and need to make way to new, strengthened, and time-critical logistics systems. The aim of this study is to establish a mathematical model for the optimisation of logistics processes in modular construction covering three tiers of operation: manufacturing, storage and assembly. Previous studies have indicated that construction site delays constitute the largest cause of schedule deviations. Using the model outlined in this paper we seek to determine how factory manufacturing and inventory management should react to variations in the demand on construction sites. A two-stage stochastic programming model is developed to capture all possible demand variations on site. The model is evaluated using a case study from the residential construction sector. The application shows that the model is effective and can serve as decision support to optimise modular construction logistics

    Finite element analysis of stress distribution and the effects of geometry in a laser-generated single-stage ceramic tile grout seal using ANSYS

    Get PDF
    Optimisation of the geometry (curvature of the vitrified enamel layer) of a laser-generated single-stage ceramic tile grout seal has carried out with a finite element (FE) model. The overall load bearing capacities and load-displacement plots of three selected geometries were determined experimentally by the indentation technique. Simultaneously, a FE model was developed utilising the commercial ANSYS package to simulate the indentation. Although the load-displacement plots generated by the FE model consistently displayed stiffer identities than the experimentally obtained results, there was reasonably close agreement between the two sets of results. Stress distribution profiles of the three FE models at failure loads were analysed and correlated so as to draw an implication on the prediction of a catastrophic failure through an analysis of FE-generated stress distribution profiles. It was observed that although increased curvatures of the vitrified enamel layer do enhance the overall load-bearing capacity of the single-stage ceramic tile grout seal and bring about a lower nominal stress, there is a higher build up in stress concentration at the apex that would inevitably reduce the load-bearing capacity of the enamel glaze. Consequently, the optimum geometry of the vitrified enamel layer was determined to be flat
    corecore